Spaces:
Sleeping
Sleeping
saranbalan
commited on
Commit
•
c06d39e
1
Parent(s):
34ba4a8
Update app.py
Browse files
app.py
CHANGED
@@ -7,22 +7,56 @@ import os
|
|
7 |
import torch
|
8 |
import openai
|
9 |
from huggingface_hub import InferenceApi
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
# Set up Groq API key
|
14 |
api_key = os.getenv("GROQ_API_KEY")
|
15 |
client = Groq(api_key=api_key)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
model_id1 = os.getenv("API_KEY")
|
24 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id1, low_cpu_mem_usage=True, use_safetensors=True)
|
25 |
-
pipe = pipe.to('cpu')
|
26 |
|
27 |
# Updated function for text generation using the new API structure
|
28 |
def generate_creative_text(prompt):
|
@@ -40,8 +74,6 @@ def process_audio(audio_path, image_option, creative_text_option):
|
|
40 |
if audio_path is None:
|
41 |
return "Please upload an audio file.", None, None, None
|
42 |
|
43 |
-
|
44 |
-
|
45 |
# Step 1: Transcribe audio
|
46 |
try:
|
47 |
with open(audio_path, "rb") as file:
|
@@ -67,20 +99,15 @@ def process_audio(audio_path, image_option, creative_text_option):
|
|
67 |
if creative_text_option == "Generate Creative Text":
|
68 |
creative_text = generate_creative_text(translation)
|
69 |
|
70 |
-
|
71 |
# Step 4: Generate image (if selected)
|
72 |
image = None
|
73 |
if image_option == "Generate Image":
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
pipe = pipe.to('cpu')
|
78 |
-
image = pipe(translation).images[0]
|
79 |
-
except Exception as e:
|
80 |
-
return tamil_text, translation, creative_text, f"An error occurred during image generation: {str(e)}"
|
81 |
|
82 |
return tamil_text, translation, creative_text, image
|
83 |
-
|
84 |
|
85 |
# Create Gradio interface
|
86 |
with gr.Blocks(theme=gr.themes.Base()) as iface:
|
@@ -104,4 +131,3 @@ with gr.Blocks(theme=gr.themes.Base()) as iface:
|
|
104 |
|
105 |
# Launch the interface
|
106 |
iface.launch()
|
107 |
-
|
|
|
7 |
import torch
|
8 |
import openai
|
9 |
from huggingface_hub import InferenceApi
|
10 |
+
from PIL import Image
|
11 |
+
import requests
|
12 |
+
import io
|
13 |
+
import time
|
14 |
|
15 |
# Set up Groq API key
|
16 |
api_key = os.getenv("GROQ_API_KEY")
|
17 |
client = Groq(api_key=api_key)
|
18 |
|
19 |
+
# Hugging Face API details for image generation
|
20 |
+
H_key = os.getenv('API_KEY')
|
21 |
+
API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2"
|
22 |
+
headers = {"Authorization": f"Bearer {H_key}"}
|
23 |
+
|
24 |
+
|
25 |
+
# Function for querying image generation with retries
|
26 |
+
def query_image_generation(payload, max_retries=5):
|
27 |
+
for attempt in range(max_retries):
|
28 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
29 |
|
30 |
+
if response.status_code == 503:
|
31 |
+
print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}")
|
32 |
+
estimated_time = min(response.json().get("estimated_time", 60), 60)
|
33 |
+
time.sleep(estimated_time)
|
34 |
+
continue
|
35 |
|
36 |
+
if response.status_code != 200:
|
37 |
+
print(f"Error: Received status code {response.status_code}")
|
38 |
+
print(f"Response: {response.text}")
|
39 |
+
return None
|
40 |
+
|
41 |
+
return response.content
|
42 |
+
|
43 |
+
print(f"Failed to generate image after {max_retries} attempts.")
|
44 |
+
return None
|
45 |
+
|
46 |
+
# Function for generating an image from text
|
47 |
+
def generate_image(prompt):
|
48 |
+
image_bytes = query_image_generation({"inputs": prompt})
|
49 |
+
|
50 |
+
if image_bytes is None:
|
51 |
+
return None
|
52 |
+
|
53 |
+
try:
|
54 |
+
image = Image.open(io.BytesIO(image_bytes)) # Opening the image from bytes
|
55 |
+
return image
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error: {e}")
|
58 |
+
return None
|
59 |
|
|
|
|
|
|
|
60 |
|
61 |
# Updated function for text generation using the new API structure
|
62 |
def generate_creative_text(prompt):
|
|
|
74 |
if audio_path is None:
|
75 |
return "Please upload an audio file.", None, None, None
|
76 |
|
|
|
|
|
77 |
# Step 1: Transcribe audio
|
78 |
try:
|
79 |
with open(audio_path, "rb") as file:
|
|
|
99 |
if creative_text_option == "Generate Creative Text":
|
100 |
creative_text = generate_creative_text(translation)
|
101 |
|
|
|
102 |
# Step 4: Generate image (if selected)
|
103 |
image = None
|
104 |
if image_option == "Generate Image":
|
105 |
+
image = generate_image(translation)
|
106 |
+
if image is None:
|
107 |
+
return tamil_text, translation, creative_text, f"An error occurred during image generation"
|
|
|
|
|
|
|
|
|
108 |
|
109 |
return tamil_text, translation, creative_text, image
|
110 |
+
|
111 |
|
112 |
# Create Gradio interface
|
113 |
with gr.Blocks(theme=gr.themes.Base()) as iface:
|
|
|
131 |
|
132 |
# Launch the interface
|
133 |
iface.launch()
|
|