b_norm / reused.py
saridormi's picture
initial commit
6de9c64
"""
This script is copied from https://github.com/DeepSoftwareAnalytics/CommitMsgEmpirical,
the replication package for "On the Evaluation of Commit Message Generation Models: An Experimental Study"
accepted to ICSME 2021.
"""
#!/usr/bin/python
"""
This script was adapted from the original version by hieuhoang1972 which is part of MOSES.
"""
# $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $
"""Provides:
cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test().
cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked().
score_cooked(alltest, n=4): Score a list of cooked test sentences.
score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids.
The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible.
"""
import math
import os
import re
import subprocess
import sys
import xml.sax.saxutils
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
nonorm = 0
preserve_case = False
eff_ref_len = "shortest"
normalize1 = [
("<skipped>", ""), # strip "skipped" tags
(r"-\n", ""), # strip end-of-line hyphenation and join lines
(r"\n", " "), # join lines
# (r'(\d)\s+(?=\d)', r'\1'), # join digits
]
normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1]
normalize2 = [
(r"([\{-\~\[-\` -\&\(-\+\:-\@\/])", r" \1 "), # tokenize punctuation. apostrophe is missing
(r"([^0-9])([\.,])", r"\1 \2 "), # tokenize period and comma unless preceded by a digit
(r"([\.,])([^0-9])", r" \1 \2"), # tokenize period and comma unless followed by a digit
(r"([0-9])(-)", r"\1 \2 "), # tokenize dash when preceded by a digit
]
normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2]
def normalize(s):
"""Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl."""
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
if nonorm:
return s.split()
if type(s) is not str:
s = " ".join(s)
# language-independent part:
for (pattern, replace) in normalize1:
s = re.sub(pattern, replace, s)
s = xml.sax.saxutils.unescape(s, {"&quot;": '"'})
# language-dependent part (assuming Western languages):
s = " %s " % s
if not preserve_case:
s = s.lower() # this might not be identical to the original
for (pattern, replace) in normalize2:
s = re.sub(pattern, replace, s)
return s.split()
def count_ngrams(words, n=4):
counts = {}
for k in range(1, n + 1):
for i in range(len(words) - k + 1):
ngram = tuple(words[i : i + k])
counts[ngram] = counts.get(ngram, 0) + 1
return counts
def cook_refs(refs, n=4):
"""Takes a list of reference sentences for a single segment
and returns an object that encapsulates everything that BLEU
needs to know about them."""
refs = [normalize(ref) for ref in refs]
maxcounts = {}
for ref in refs:
counts = count_ngrams(ref, n)
for (ngram, count) in counts.items():
maxcounts[ngram] = max(maxcounts.get(ngram, 0), count)
return ([len(ref) for ref in refs], maxcounts)
def cook_test(test, item, n=4):
"""Takes a test sentence and returns an object that
encapsulates everything that BLEU needs to know about it."""
(reflens, refmaxcounts) = item
test = normalize(test)
result = {}
result["testlen"] = len(test)
# Calculate effective reference sentence length.
if eff_ref_len == "shortest":
result["reflen"] = min(reflens)
elif eff_ref_len == "average":
result["reflen"] = float(sum(reflens)) / len(reflens)
elif eff_ref_len == "closest":
min_diff = None
for reflen in reflens:
if min_diff is None or abs(reflen - len(test)) < min_diff:
min_diff = abs(reflen - len(test))
result["reflen"] = reflen
result["guess"] = [max(len(test) - k + 1, 0) for k in range(1, n + 1)]
result["correct"] = [0] * n
counts = count_ngrams(test, n)
for (ngram, count) in counts.items():
result["correct"][len(ngram) - 1] += min(refmaxcounts.get(ngram, 0), count)
return result
def score_cooked(allcomps, n=4, ground=0, smooth=1):
totalcomps = {"testlen": 0, "reflen": 0, "guess": [0] * n, "correct": [0] * n}
for comps in allcomps:
for key in ["testlen", "reflen"]:
totalcomps[key] += comps[key]
for key in ["guess", "correct"]:
for k in range(n):
totalcomps[key][k] += comps[key][k]
logbleu = 0.0
all_bleus = []
for k in range(n):
correct = totalcomps["correct"][k]
guess = totalcomps["guess"][k]
addsmooth = 0
if smooth == 1 and k > 0:
addsmooth = 1
logbleu += math.log(correct + addsmooth + sys.float_info.min) - math.log(guess + addsmooth + sys.float_info.min)
if guess == 0:
all_bleus.append(-10000000)
else:
all_bleus.append(math.log(correct + sys.float_info.min) - math.log(guess))
logbleu /= float(n)
all_bleus.insert(0, logbleu)
brevPenalty = min(0, 1 - float(totalcomps["reflen"] + 1) / (totalcomps["testlen"] + 1))
for i in range(len(all_bleus)):
if i == 0:
all_bleus[i] += brevPenalty
all_bleus[i] = math.exp(all_bleus[i])
return all_bleus
def bleu(refs, candidate, ground=0, smooth=1):
refs = cook_refs(refs)
test = cook_test(candidate, refs)
return score_cooked([test], ground=ground, smooth=smooth)
def splitPuncts(line):
return " ".join(re.findall(r"[\w]+|[^\s\w]", line))
def computeMaps(predictions, goldfile):
predictionMap = {}
goldMap = {}
gf = open(goldfile, "r")
for row in predictions:
cols = row.strip().split("\t")
if len(cols) == 1:
(rid, pred) = (cols[0], "")
else:
(rid, pred) = (cols[0], cols[1])
predictionMap[rid] = [splitPuncts(pred.strip().lower())]
for row in gf:
(rid, pred) = row.split("\t")
if rid in predictionMap: # Only insert if the id exists for the method
if rid not in goldMap:
goldMap[rid] = []
goldMap[rid].append(splitPuncts(pred.strip().lower()))
return (goldMap, predictionMap)
# m1 is the reference map
# m2 is the prediction map
def bleuFromMaps(m1, m2):
score = [0] * 5
num = 0.0
for key in m1:
if key in m2:
bl = bleu(m1[key], m2[key][0])
score = [score[i] + bl[i] for i in range(0, len(bl))]
num += 1
return [s * 100.0 / num for s in score]
if __name__ == "__main__":
ref_sentence_lst = open(sys.argv[1]).read().split("\n")
with open("tmp_ref.txt", "w") as f:
for idx, ref_sentence in enumerate(ref_sentence_lst):
f.write("{}\t{}\n".format(idx, ref_sentence))
reference_file = "tmp_ref.txt"
predictions = []
for idx, row in enumerate(sys.stdin):
predictions.append("{}\t{}".format(idx, row))
if len(predictions) == len(ref_sentence_lst) - 1:
predictions.append("{}\t{}".format(len(predictions), ""))
(goldMap, predictionMap) = computeMaps(predictions, reference_file)
print(bleuFromMaps(goldMap, predictionMap)[0])
os.remove("tmp_ref.txt")