initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("saridormi/b_norm")
|
6 |
+
launch_gradio_widget(module)
|
b_norm.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import evaluate
|
5 |
+
|
6 |
+
from .reused import bleuFromMaps, splitPuncts
|
7 |
+
|
8 |
+
_CITATION = """\
|
9 |
+
@inproceedings{tao2021evaluation,
|
10 |
+
title={On the Evaluation of Commit Message Generation Models: An Experimental Study},
|
11 |
+
author={Tao, Wei and Wang, Yanlin and Shi, Ensheng and Du, Lun and Han, Shi and Zhang, Hongyu and Zhang, Dongmei and Zhang, Wenqiang},
|
12 |
+
booktitle={2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)},
|
13 |
+
pages={126--136},
|
14 |
+
year={2021},
|
15 |
+
organization={IEEE}
|
16 |
+
}
|
17 |
+
@inproceedings{Papineni02bleu:a,
|
18 |
+
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
|
19 |
+
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
|
20 |
+
booktitle = {},
|
21 |
+
year = {2002},
|
22 |
+
pages = {311--318}
|
23 |
+
}
|
24 |
+
@inproceedings{lin-och-2004-orange,
|
25 |
+
title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",
|
26 |
+
author = "Lin, Chin-Yew and
|
27 |
+
Och, Franz Josef",
|
28 |
+
booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",
|
29 |
+
month = "aug 23{--}aug 27",
|
30 |
+
year = "2004",
|
31 |
+
address = "Geneva, Switzerland",
|
32 |
+
publisher = "COLING",
|
33 |
+
url = "https://www.aclweb.org/anthology/C04-1072",
|
34 |
+
pages = "501--507",
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
B-Norm is a variation of BLEU. It uses smoothing by Lin and Och, 2004 and does some additional preprocessing steps.
|
40 |
+
It was recommended for evaluation of commit message generation approaches in the
|
41 |
+
"On the Evaluation of Commit Message Generation Models: An Experimental Study" paper accepted to ICSME 2021.
|
42 |
+
This class uses implementation provided in the replication package.
|
43 |
+
"""
|
44 |
+
|
45 |
+
|
46 |
+
class BLEUNorm(evaluate.Metric):
|
47 |
+
def _info(self):
|
48 |
+
return evaluate.MetricInfo(
|
49 |
+
description=_DESCRIPTION,
|
50 |
+
citation=_CITATION,
|
51 |
+
features=datasets.Features(
|
52 |
+
{
|
53 |
+
"predictions": datasets.Value("string", id="sequence"),
|
54 |
+
"references": datasets.Value("string", id="sequence"),
|
55 |
+
}
|
56 |
+
),
|
57 |
+
codebase_urls=["https://github.com/DeepSoftwareAnalytics/CommitMsgEmpirical/blob/main/metrics/B-Norm.py"],
|
58 |
+
)
|
59 |
+
|
60 |
+
def _compute(self, predictions: List[str], references: List[str]) -> Dict[str, float]: # type: ignore[override]
|
61 |
+
prediction_map = {i: [splitPuncts(pred.strip().lower())] for i, pred in enumerate(predictions)}
|
62 |
+
gold_map = {i: [splitPuncts(ref.strip().lower())] for i, ref in enumerate(references)}
|
63 |
+
return {"b_norm": bleuFromMaps(gold_map, prediction_map)[0] / 100.0}
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
evaluate
|
reused.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This script is copied from https://github.com/DeepSoftwareAnalytics/CommitMsgEmpirical,
|
3 |
+
the replication package for "On the Evaluation of Commit Message Generation Models: An Experimental Study"
|
4 |
+
accepted to ICSME 2021.
|
5 |
+
"""
|
6 |
+
|
7 |
+
#!/usr/bin/python
|
8 |
+
|
9 |
+
"""
|
10 |
+
This script was adapted from the original version by hieuhoang1972 which is part of MOSES.
|
11 |
+
"""
|
12 |
+
|
13 |
+
# $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $
|
14 |
+
|
15 |
+
"""Provides:
|
16 |
+
cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test().
|
17 |
+
cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked().
|
18 |
+
score_cooked(alltest, n=4): Score a list of cooked test sentences.
|
19 |
+
score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids.
|
20 |
+
The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible.
|
21 |
+
"""
|
22 |
+
|
23 |
+
import math
|
24 |
+
import os
|
25 |
+
import re
|
26 |
+
import subprocess
|
27 |
+
import sys
|
28 |
+
import xml.sax.saxutils
|
29 |
+
|
30 |
+
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
31 |
+
nonorm = 0
|
32 |
+
|
33 |
+
preserve_case = False
|
34 |
+
eff_ref_len = "shortest"
|
35 |
+
|
36 |
+
normalize1 = [
|
37 |
+
("<skipped>", ""), # strip "skipped" tags
|
38 |
+
(r"-\n", ""), # strip end-of-line hyphenation and join lines
|
39 |
+
(r"\n", " "), # join lines
|
40 |
+
# (r'(\d)\s+(?=\d)', r'\1'), # join digits
|
41 |
+
]
|
42 |
+
normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1]
|
43 |
+
|
44 |
+
normalize2 = [
|
45 |
+
(r"([\{-\~\[-\` -\&\(-\+\:-\@\/])", r" \1 "), # tokenize punctuation. apostrophe is missing
|
46 |
+
(r"([^0-9])([\.,])", r"\1 \2 "), # tokenize period and comma unless preceded by a digit
|
47 |
+
(r"([\.,])([^0-9])", r" \1 \2"), # tokenize period and comma unless followed by a digit
|
48 |
+
(r"([0-9])(-)", r"\1 \2 "), # tokenize dash when preceded by a digit
|
49 |
+
]
|
50 |
+
normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2]
|
51 |
+
|
52 |
+
|
53 |
+
def normalize(s):
|
54 |
+
"""Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl."""
|
55 |
+
# Added to bypass NIST-style pre-processing of hyp and ref files -- wade
|
56 |
+
if nonorm:
|
57 |
+
return s.split()
|
58 |
+
if type(s) is not str:
|
59 |
+
s = " ".join(s)
|
60 |
+
# language-independent part:
|
61 |
+
for (pattern, replace) in normalize1:
|
62 |
+
s = re.sub(pattern, replace, s)
|
63 |
+
s = xml.sax.saxutils.unescape(s, {""": '"'})
|
64 |
+
# language-dependent part (assuming Western languages):
|
65 |
+
s = " %s " % s
|
66 |
+
if not preserve_case:
|
67 |
+
s = s.lower() # this might not be identical to the original
|
68 |
+
for (pattern, replace) in normalize2:
|
69 |
+
s = re.sub(pattern, replace, s)
|
70 |
+
return s.split()
|
71 |
+
|
72 |
+
|
73 |
+
def count_ngrams(words, n=4):
|
74 |
+
counts = {}
|
75 |
+
for k in range(1, n + 1):
|
76 |
+
for i in range(len(words) - k + 1):
|
77 |
+
ngram = tuple(words[i : i + k])
|
78 |
+
counts[ngram] = counts.get(ngram, 0) + 1
|
79 |
+
return counts
|
80 |
+
|
81 |
+
|
82 |
+
def cook_refs(refs, n=4):
|
83 |
+
"""Takes a list of reference sentences for a single segment
|
84 |
+
and returns an object that encapsulates everything that BLEU
|
85 |
+
needs to know about them."""
|
86 |
+
|
87 |
+
refs = [normalize(ref) for ref in refs]
|
88 |
+
maxcounts = {}
|
89 |
+
for ref in refs:
|
90 |
+
counts = count_ngrams(ref, n)
|
91 |
+
for (ngram, count) in counts.items():
|
92 |
+
maxcounts[ngram] = max(maxcounts.get(ngram, 0), count)
|
93 |
+
return ([len(ref) for ref in refs], maxcounts)
|
94 |
+
|
95 |
+
|
96 |
+
def cook_test(test, item, n=4):
|
97 |
+
"""Takes a test sentence and returns an object that
|
98 |
+
encapsulates everything that BLEU needs to know about it."""
|
99 |
+
(reflens, refmaxcounts) = item
|
100 |
+
test = normalize(test)
|
101 |
+
result = {}
|
102 |
+
result["testlen"] = len(test)
|
103 |
+
|
104 |
+
# Calculate effective reference sentence length.
|
105 |
+
|
106 |
+
if eff_ref_len == "shortest":
|
107 |
+
result["reflen"] = min(reflens)
|
108 |
+
elif eff_ref_len == "average":
|
109 |
+
result["reflen"] = float(sum(reflens)) / len(reflens)
|
110 |
+
elif eff_ref_len == "closest":
|
111 |
+
min_diff = None
|
112 |
+
for reflen in reflens:
|
113 |
+
if min_diff is None or abs(reflen - len(test)) < min_diff:
|
114 |
+
min_diff = abs(reflen - len(test))
|
115 |
+
result["reflen"] = reflen
|
116 |
+
|
117 |
+
result["guess"] = [max(len(test) - k + 1, 0) for k in range(1, n + 1)]
|
118 |
+
|
119 |
+
result["correct"] = [0] * n
|
120 |
+
counts = count_ngrams(test, n)
|
121 |
+
for (ngram, count) in counts.items():
|
122 |
+
result["correct"][len(ngram) - 1] += min(refmaxcounts.get(ngram, 0), count)
|
123 |
+
|
124 |
+
return result
|
125 |
+
|
126 |
+
|
127 |
+
def score_cooked(allcomps, n=4, ground=0, smooth=1):
|
128 |
+
totalcomps = {"testlen": 0, "reflen": 0, "guess": [0] * n, "correct": [0] * n}
|
129 |
+
for comps in allcomps:
|
130 |
+
for key in ["testlen", "reflen"]:
|
131 |
+
totalcomps[key] += comps[key]
|
132 |
+
for key in ["guess", "correct"]:
|
133 |
+
for k in range(n):
|
134 |
+
totalcomps[key][k] += comps[key][k]
|
135 |
+
logbleu = 0.0
|
136 |
+
all_bleus = []
|
137 |
+
for k in range(n):
|
138 |
+
correct = totalcomps["correct"][k]
|
139 |
+
guess = totalcomps["guess"][k]
|
140 |
+
addsmooth = 0
|
141 |
+
if smooth == 1 and k > 0:
|
142 |
+
addsmooth = 1
|
143 |
+
logbleu += math.log(correct + addsmooth + sys.float_info.min) - math.log(guess + addsmooth + sys.float_info.min)
|
144 |
+
if guess == 0:
|
145 |
+
all_bleus.append(-10000000)
|
146 |
+
else:
|
147 |
+
all_bleus.append(math.log(correct + sys.float_info.min) - math.log(guess))
|
148 |
+
|
149 |
+
logbleu /= float(n)
|
150 |
+
all_bleus.insert(0, logbleu)
|
151 |
+
|
152 |
+
brevPenalty = min(0, 1 - float(totalcomps["reflen"] + 1) / (totalcomps["testlen"] + 1))
|
153 |
+
for i in range(len(all_bleus)):
|
154 |
+
if i == 0:
|
155 |
+
all_bleus[i] += brevPenalty
|
156 |
+
all_bleus[i] = math.exp(all_bleus[i])
|
157 |
+
return all_bleus
|
158 |
+
|
159 |
+
|
160 |
+
def bleu(refs, candidate, ground=0, smooth=1):
|
161 |
+
refs = cook_refs(refs)
|
162 |
+
test = cook_test(candidate, refs)
|
163 |
+
return score_cooked([test], ground=ground, smooth=smooth)
|
164 |
+
|
165 |
+
|
166 |
+
def splitPuncts(line):
|
167 |
+
return " ".join(re.findall(r"[\w]+|[^\s\w]", line))
|
168 |
+
|
169 |
+
|
170 |
+
def computeMaps(predictions, goldfile):
|
171 |
+
predictionMap = {}
|
172 |
+
goldMap = {}
|
173 |
+
gf = open(goldfile, "r")
|
174 |
+
|
175 |
+
for row in predictions:
|
176 |
+
cols = row.strip().split("\t")
|
177 |
+
if len(cols) == 1:
|
178 |
+
(rid, pred) = (cols[0], "")
|
179 |
+
else:
|
180 |
+
(rid, pred) = (cols[0], cols[1])
|
181 |
+
predictionMap[rid] = [splitPuncts(pred.strip().lower())]
|
182 |
+
|
183 |
+
for row in gf:
|
184 |
+
(rid, pred) = row.split("\t")
|
185 |
+
if rid in predictionMap: # Only insert if the id exists for the method
|
186 |
+
if rid not in goldMap:
|
187 |
+
goldMap[rid] = []
|
188 |
+
goldMap[rid].append(splitPuncts(pred.strip().lower()))
|
189 |
+
|
190 |
+
return (goldMap, predictionMap)
|
191 |
+
|
192 |
+
|
193 |
+
# m1 is the reference map
|
194 |
+
# m2 is the prediction map
|
195 |
+
def bleuFromMaps(m1, m2):
|
196 |
+
score = [0] * 5
|
197 |
+
num = 0.0
|
198 |
+
|
199 |
+
for key in m1:
|
200 |
+
if key in m2:
|
201 |
+
bl = bleu(m1[key], m2[key][0])
|
202 |
+
score = [score[i] + bl[i] for i in range(0, len(bl))]
|
203 |
+
num += 1
|
204 |
+
return [s * 100.0 / num for s in score]
|
205 |
+
|
206 |
+
|
207 |
+
if __name__ == "__main__":
|
208 |
+
ref_sentence_lst = open(sys.argv[1]).read().split("\n")
|
209 |
+
with open("tmp_ref.txt", "w") as f:
|
210 |
+
for idx, ref_sentence in enumerate(ref_sentence_lst):
|
211 |
+
f.write("{}\t{}\n".format(idx, ref_sentence))
|
212 |
+
|
213 |
+
reference_file = "tmp_ref.txt"
|
214 |
+
predictions = []
|
215 |
+
for idx, row in enumerate(sys.stdin):
|
216 |
+
predictions.append("{}\t{}".format(idx, row))
|
217 |
+
if len(predictions) == len(ref_sentence_lst) - 1:
|
218 |
+
predictions.append("{}\t{}".format(len(predictions), ""))
|
219 |
+
(goldMap, predictionMap) = computeMaps(predictions, reference_file)
|
220 |
+
print(bleuFromMaps(goldMap, predictionMap)[0])
|
221 |
+
os.remove("tmp_ref.txt")
|