|
import streamlit as st |
|
from keras.layers import LSTM, Dropout, Bidirectional, Dense,Embedding,Flatten,Maximum,Activation,Conv2D,LayerNormalization,add\ |
|
, BatchNormalization, SpatialDropout1D ,Input,Layer,Multiply,Reshape ,Add, GRU,Concatenate,Conv1D,TimeDistributed,ZeroPadding1D,concatenate,MaxPool1D,GlobalMaxPooling1D |
|
import keras.backend as K |
|
from keras import initializers, regularizers, constraints, activations |
|
from keras.initializers import Constant |
|
from keras import Model |
|
import sys |
|
import json |
|
import pandas as pd |
|
import numpy as np |
|
|
|
with open('CHAR_TYPES_MAP.json') as json_file: |
|
CHAR_TYPES_MAP = json.load(json_file) |
|
with open('CHARS_MAP.json') as json_file: |
|
CHARS_MAP = json.load(json_file) |
|
with open('CHAR_TYPE_FLATTEN.json') as json_file: |
|
CHAR_TYPE_FLATTEN = json.load(json_file) |
|
|
|
|
|
class TimestepDropout(Dropout): |
|
|
|
def __init__(self, rate, **kwargs): |
|
super(TimestepDropout, self).__init__(rate, **kwargs) |
|
|
|
def _get_noise_shape(self, inputs): |
|
input_shape = K.shape(inputs) |
|
noise_shape = (input_shape[0], input_shape[1], 1) |
|
return noise_shape |
|
|
|
def model_(n_gram = 21): |
|
|
|
input1 = Input(shape=(21,),dtype='float32',name = 'char_input') |
|
input2 = Input(shape=(21,),dtype='float32',name = 'type_input') |
|
a = Embedding(178, 32)(input1) |
|
a = SpatialDropout1D(0.15)(a) |
|
|
|
char_input = BatchNormalization()(a) |
|
a_concat = [] |
|
filters = [[1,200],[2,200],[3,200],[4,200],[5,200],[6,200],[8,200],[11,150],[12,100]] |
|
|
|
|
|
for (window_size, filters_size) in filters: |
|
convs = Conv1D(filters=filters_size, kernel_size=window_size, strides=1)(char_input) |
|
convs = Activation('elu')(convs) |
|
convs = TimeDistributed(Dense(5, input_shape=(21, filters_size)))(convs) |
|
convs = ZeroPadding1D(padding=(0, window_size-1))(convs) |
|
a_concat.append(convs) |
|
token_max = Maximum()(a_concat) |
|
lstm_char = Bidirectional(LSTM(128 ,return_sequences=True,kernel_regularizer=regularizers.L2(0.0000001),bias_regularizer=regularizers.L2(0.0000001)))(char_input) |
|
lstm_char = Dense(64, activation='elu')(lstm_char) |
|
|
|
|
|
|
|
b = Embedding(12, 12)(input2) |
|
type_inputs = SpatialDropout1D(0.15)(b) |
|
|
|
x = Concatenate()([type_inputs, char_input, lstm_char, token_max]) |
|
x = BatchNormalization()(x) |
|
x = Flatten()(x) |
|
x = Dense(100, activation='elu')(x) |
|
x = Dropout(0.2)(x) |
|
out = Dense(1, activation='sigmoid',dtype = 'float32',kernel_regularizer=regularizers.L2(0.01),bias_regularizer=regularizers.L2(0.01))(x) |
|
model = Model(inputs=[input1, input2], outputs=out) |
|
return model |
|
|
|
|
|
def create_feature_array(text, n_pad=21): |
|
|
|
n = len(text) |
|
n_pad_2 = int((n_pad - 1)/2) |
|
text_pad = [' '] * n_pad_2 + [t for t in text] + [' '] * n_pad_2 |
|
x_char, x_type = [], [] |
|
for i in range(n_pad_2, n_pad_2 + n): |
|
char_list = text_pad[i + 1: i + n_pad_2 + 1] + \ |
|
list(reversed(text_pad[i - n_pad_2: i])) + \ |
|
[text_pad[i]] |
|
char_map = [CHARS_MAP.get(c, 179) for c in char_list] |
|
char_type = [CHAR_TYPES_MAP.get(CHAR_TYPE_FLATTEN.get(c, 'o'), 4) |
|
for c in char_list] |
|
x_char.append(char_map) |
|
x_type.append(char_type) |
|
x_char = np.array(x_char).astype(float) |
|
x_type = np.array(x_type).astype(float) |
|
return x_char, x_type |
|
def tokenize(text): |
|
|
|
n_pad = 21 |
|
if not text: |
|
return [''] |
|
if isinstance(text, str) and sys.version_info.major == 2: |
|
text = text.decode('utf-8') |
|
x_char, x_type = create_feature_array(text, n_pad=n_pad) |
|
word_end = [] |
|
y_predict = model.predict([x_char, x_type], batch_size = 512) |
|
y_predict = (y_predict.ravel() > 0.46542968749999997).astype(int) |
|
word_end = y_predict[1:].tolist() + [1] |
|
tokens = [] |
|
word = '' |
|
for char, w_e in zip(text, word_end): |
|
word += char |
|
if w_e: |
|
tokens.append(word) |
|
word = '' |
|
return tokens |
|
|
|
model = model_() |
|
model.load_weights("cutto_tf2.h5") |
|
st.title("Cutto Thai word segmentation.") |
|
text = st.text_area("Enter original text!") |
|
if st.button("cut it!!"): |
|
if text: |
|
words = tokenize(text) |
|
st.subheader("Answer:") |
|
st.write('|'.join(words)) |
|
else: |
|
st.warning("Please enter some text to seggmentation") |
|
|
|
multi = '''### Score |
|
Evaluate the model performance using the test dataset divided from BEST CORPUS 2009, which comprises 10 percent, with the following scores: |
|
- F1-Score: 98.37 |
|
- Precision: 98.02 |
|
- Recall: 98.67 |
|
|
|
### Resource Funding |
|
NSTDA Supercomputer center (ThaiSC) and the National e-Science Infrastructure Consortium for their support of computer facilities. |
|
|
|
### Citation |
|
If you use cutto in your project or publication, please cite the model as follows: |
|
''' |
|
st.markdown(multi) |
|
st.code(f""" |
|
ปรีชานนท์ ชาติไทย และ สัจจวัจน์ ส่งเสริม. (2567), |
|
การสรุปข้อความข่าวภาษาไทยด้วยโครงข่ายประสาทเทียม (Thai News Text Summarization Using Neural Network), |
|
วิทยาศาสตรบัณฑิต (วทบ.):ขอนแก่น, มหาวิทยาลัยขอนแก่น) |
|
""") |
|
|