Spaces:
Runtime error
Runtime error
from transformers import AutoFeatureExtractor, RegNetForImageClassification | |
import torch | |
import gradio as gr | |
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040") | |
model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040") | |
def inference(image): | |
print("Type of image", type(image)) | |
inputs = feature_extractor(image, return_tensors="pt") | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
predicted_label = logits.argmax(-1).item() | |
return model.config.id2label[predicted_label] | |
title="RegNet-image-classification" | |
description="This space uses RegNet Model with an image classification head on top (a linear layer on top of the pooled features). It predicts one of the 1000 ImageNet classes. Check [Docs](https://huggingface.co/docs/transformers/main/en/model_doc/regnet) for more details." | |
examples=[['wolf.jpg'], ['ballon.jpg'], ['fountain.jpg']] | |
iface = gr.Interface(inference, inputs=gr.inputs.Image(), outputs="text",title=title,description=description,examples=examples) | |
iface.launch(enable_queue=True) |