Spaces:
Runtime error
Runtime error
Test change
Browse files
recommendation-api/server.py
CHANGED
@@ -18,6 +18,7 @@ async def startup_event():
|
|
18 |
global learn
|
19 |
tasks = [asyncio.ensure_future(setup_learner(model_filename))] # assign some task
|
20 |
learn = (await asyncio.gather(*tasks))[0]
|
|
|
21 |
|
22 |
@app.get("/users")
|
23 |
async def get_users(limit: int = Query(10)):
|
|
|
18 |
global learn
|
19 |
tasks = [asyncio.ensure_future(setup_learner(model_filename))] # assign some task
|
20 |
learn = (await asyncio.gather(*tasks))[0]
|
21 |
+
print("Model initialized")
|
22 |
|
23 |
@app.get("/users")
|
24 |
async def get_users(limit: int = Query(10)):
|
recommendation-api/tracks.py
CHANGED
@@ -1,15 +1,21 @@
|
|
1 |
import pandas as pd
|
2 |
|
|
|
|
|
3 |
# Read track infos and build the entry representation
|
4 |
tracks_df = pd.read_csv('data/music_info.csv')
|
5 |
tracks_df.fillna('', inplace=True)
|
6 |
tracks_df["entry"] = tracks_df["name"] + ", " + tracks_df["artist"] + ", " + tracks_df["year"].astype(str)
|
7 |
|
|
|
|
|
8 |
# Raw dataframe from the training set
|
9 |
model_df = pd.read_csv('data/model.csv')
|
10 |
model_interactions_df = model_df[['user_id', 'track_id']]
|
11 |
model_tracks_df = model_df[['entry']].drop_duplicates()
|
12 |
|
|
|
|
|
13 |
# Create a dictionary where user_id is the key and full track history value
|
14 |
user_to_track_history_df = pd.merge(tracks_df, model_interactions_df, on='track_id', how='left').astype(str)
|
15 |
user_to_track_history_dict = {user_id: group.drop('user_id', axis=1).to_dict('records')
|
@@ -46,4 +52,4 @@ def predictions_to_tracks(entries_and_predictions):
|
|
46 |
track_dict = track_info.to_dict('records')[0]
|
47 |
track_dict['score'] = score.astype(str)
|
48 |
tracks.append(track_dict)
|
49 |
-
return tracks
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
+
print("Initializing data")
|
4 |
+
|
5 |
# Read track infos and build the entry representation
|
6 |
tracks_df = pd.read_csv('data/music_info.csv')
|
7 |
tracks_df.fillna('', inplace=True)
|
8 |
tracks_df["entry"] = tracks_df["name"] + ", " + tracks_df["artist"] + ", " + tracks_df["year"].astype(str)
|
9 |
|
10 |
+
print("Music info parsed")
|
11 |
+
|
12 |
# Raw dataframe from the training set
|
13 |
model_df = pd.read_csv('data/model.csv')
|
14 |
model_interactions_df = model_df[['user_id', 'track_id']]
|
15 |
model_tracks_df = model_df[['entry']].drop_duplicates()
|
16 |
|
17 |
+
print("Model data parsed")
|
18 |
+
|
19 |
# Create a dictionary where user_id is the key and full track history value
|
20 |
user_to_track_history_df = pd.merge(tracks_df, model_interactions_df, on='track_id', how='left').astype(str)
|
21 |
user_to_track_history_dict = {user_id: group.drop('user_id', axis=1).to_dict('records')
|
|
|
52 |
track_dict = track_info.to_dict('records')[0]
|
53 |
track_dict['score'] = score.astype(str)
|
54 |
tracks.append(track_dict)
|
55 |
+
return tracks
|