ProPainter / model /recurrent_flow_completion.py
sczhou's picture
init code
320e465
raw
history blame
12.8 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from model.modules.deformconv import ModulatedDeformConv2d
from .misc import constant_init
class SecondOrderDeformableAlignment(ModulatedDeformConv2d):
"""Second-order deformable alignment module."""
def __init__(self, *args, **kwargs):
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 5)
super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)
self.conv_offset = nn.Sequential(
nn.Conv2d(3 * self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, 27 * self.deform_groups, 3, 1, 1),
)
self.init_offset()
def init_offset(self):
constant_init(self.conv_offset[-1], val=0, bias=0)
def forward(self, x, extra_feat):
out = self.conv_offset(extra_feat)
o1, o2, mask = torch.chunk(out, 3, dim=1)
# offset
offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
offset = torch.cat([offset_1, offset_2], dim=1)
# mask
mask = torch.sigmoid(mask)
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias,
self.stride, self.padding,
self.dilation, mask)
class BidirectionalPropagation(nn.Module):
def __init__(self, channel):
super(BidirectionalPropagation, self).__init__()
modules = ['backward_', 'forward_']
self.deform_align = nn.ModuleDict()
self.backbone = nn.ModuleDict()
self.channel = channel
for i, module in enumerate(modules):
self.deform_align[module] = SecondOrderDeformableAlignment(
2 * channel, channel, 3, padding=1, deform_groups=16)
self.backbone[module] = nn.Sequential(
nn.Conv2d((2 + i) * channel, channel, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(channel, channel, 3, 1, 1),
)
self.fusion = nn.Conv2d(2 * channel, channel, 1, 1, 0)
def forward(self, x):
"""
x shape : [b, t, c, h, w]
return [b, t, c, h, w]
"""
b, t, c, h, w = x.shape
feats = {}
feats['spatial'] = [x[:, i, :, :, :] for i in range(0, t)]
for module_name in ['backward_', 'forward_']:
feats[module_name] = []
frame_idx = range(0, t)
mapping_idx = list(range(0, len(feats['spatial'])))
mapping_idx += mapping_idx[::-1]
if 'backward' in module_name:
frame_idx = frame_idx[::-1]
feat_prop = x.new_zeros(b, self.channel, h, w)
for i, idx in enumerate(frame_idx):
feat_current = feats['spatial'][mapping_idx[idx]]
if i > 0:
cond_n1 = feat_prop
# initialize second-order features
feat_n2 = torch.zeros_like(feat_prop)
cond_n2 = torch.zeros_like(cond_n1)
if i > 1: # second-order features
feat_n2 = feats[module_name][-2]
cond_n2 = feat_n2
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1) # condition information, cond(flow warped 1st/2nd feature)
feat_prop = torch.cat([feat_prop, feat_n2], dim=1) # two order feat_prop -1 & -2
feat_prop = self.deform_align[module_name](feat_prop, cond)
# fuse current features
feat = [feat_current] + \
[feats[k][idx] for k in feats if k not in ['spatial', module_name]] \
+ [feat_prop]
feat = torch.cat(feat, dim=1)
# embed current features
feat_prop = feat_prop + self.backbone[module_name](feat)
feats[module_name].append(feat_prop)
# end for
if 'backward' in module_name:
feats[module_name] = feats[module_name][::-1]
outputs = []
for i in range(0, t):
align_feats = [feats[k].pop(0) for k in feats if k != 'spatial']
align_feats = torch.cat(align_feats, dim=1)
outputs.append(self.fusion(align_feats))
return torch.stack(outputs, dim=1) + x
class deconv(nn.Module):
def __init__(self,
input_channel,
output_channel,
kernel_size=3,
padding=0):
super().__init__()
self.conv = nn.Conv2d(input_channel,
output_channel,
kernel_size=kernel_size,
stride=1,
padding=padding)
def forward(self, x):
x = F.interpolate(x,
scale_factor=2,
mode='bilinear',
align_corners=True)
return self.conv(x)
class P3DBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, use_residual=0, bias=True):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv3d(in_channels, out_channels, kernel_size=(1, kernel_size, kernel_size),
stride=(1, stride, stride), padding=(0, padding, padding), bias=bias),
nn.LeakyReLU(0.2, inplace=True)
)
self.conv2 = nn.Sequential(
nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1),
padding=(2, 0, 0), dilation=(2, 1, 1), bias=bias)
)
self.use_residual = use_residual
def forward(self, feats):
feat1 = self.conv1(feats)
feat2 = self.conv2(feat1)
if self.use_residual:
output = feats + feat2
else:
output = feat2
return output
class EdgeDetection(nn.Module):
def __init__(self, in_ch=2, out_ch=1, mid_ch=16):
super().__init__()
self.projection = nn.Sequential(
nn.Conv2d(in_ch, mid_ch, 3, 1, 1),
nn.LeakyReLU(0.2, inplace=True)
)
self.mid_layer_1 = nn.Sequential(
nn.Conv2d(mid_ch, mid_ch, 3, 1, 1),
nn.LeakyReLU(0.2, inplace=True)
)
self.mid_layer_2 = nn.Sequential(
nn.Conv2d(mid_ch, mid_ch, 3, 1, 1)
)
self.l_relu = nn.LeakyReLU(0.01, inplace=True)
self.out_layer = nn.Conv2d(mid_ch, out_ch, 1, 1, 0)
def forward(self, flow):
flow = self.projection(flow)
edge = self.mid_layer_1(flow)
edge = self.mid_layer_2(edge)
edge = self.l_relu(flow + edge)
edge = self.out_layer(edge)
edge = torch.sigmoid(edge)
return edge
class RecurrentFlowCompleteNet(nn.Module):
def __init__(self, model_path=None):
super().__init__()
self.downsample = nn.Sequential(
nn.Conv3d(3, 32, kernel_size=(1, 5, 5), stride=(1, 2, 2),
padding=(0, 2, 2), padding_mode='replicate'),
nn.LeakyReLU(0.2, inplace=True)
)
self.encoder1 = nn.Sequential(
P3DBlock(32, 32, 3, 1, 1),
nn.LeakyReLU(0.2, inplace=True),
P3DBlock(32, 64, 3, 2, 1),
nn.LeakyReLU(0.2, inplace=True)
) # 4x
self.encoder2 = nn.Sequential(
P3DBlock(64, 64, 3, 1, 1),
nn.LeakyReLU(0.2, inplace=True),
P3DBlock(64, 128, 3, 2, 1),
nn.LeakyReLU(0.2, inplace=True)
) # 8x
self.mid_dilation = nn.Sequential(
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 3, 3), dilation=(1, 3, 3)), # p = d*(k-1)/2
nn.LeakyReLU(0.2, inplace=True),
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 2, 2), dilation=(1, 2, 2)),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 1, 1), dilation=(1, 1, 1)),
nn.LeakyReLU(0.2, inplace=True)
)
# feature propagation module
self.feat_prop_module = BidirectionalPropagation(128)
self.decoder2 = nn.Sequential(
nn.Conv2d(128, 128, 3, 1, 1),
nn.LeakyReLU(0.2, inplace=True),
deconv(128, 64, 3, 1),
nn.LeakyReLU(0.2, inplace=True)
) # 4x
self.decoder1 = nn.Sequential(
nn.Conv2d(64, 64, 3, 1, 1),
nn.LeakyReLU(0.2, inplace=True),
deconv(64, 32, 3, 1),
nn.LeakyReLU(0.2, inplace=True)
) # 2x
self.upsample = nn.Sequential(
nn.Conv2d(32, 32, 3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
deconv(32, 2, 3, 1)
)
# edge loss
self.edgeDetector = EdgeDetection(in_ch=2, out_ch=1, mid_ch=16)
# Need to initial the weights of MSDeformAttn specifically
for m in self.modules():
if isinstance(m, SecondOrderDeformableAlignment):
m.init_offset()
if model_path is not None:
print('Pretrained flow completion model has loaded...')
ckpt = torch.load(model_path, map_location='cpu')
self.load_state_dict(ckpt, strict=True)
def forward(self, masked_flows, masks):
# masked_flows: b t-1 2 h w
# masks: b t-1 2 h w
b, t, _, h, w = masked_flows.size()
masked_flows = masked_flows.permute(0,2,1,3,4)
masks = masks.permute(0,2,1,3,4)
inputs = torch.cat((masked_flows, masks), dim=1)
x = self.downsample(inputs)
feat_e1 = self.encoder1(x)
feat_e2 = self.encoder2(feat_e1) # b c t h w
feat_mid = self.mid_dilation(feat_e2) # b c t h w
feat_mid = feat_mid.permute(0,2,1,3,4) # b t c h w
feat_prop = self.feat_prop_module(feat_mid)
feat_prop = feat_prop.view(-1, 128, h//8, w//8) # b*t c h w
_, c, _, h_f, w_f = feat_e1.shape
feat_e1 = feat_e1.permute(0,2,1,3,4).contiguous().view(-1, c, h_f, w_f) # b*t c h w
feat_d2 = self.decoder2(feat_prop) + feat_e1
_, c, _, h_f, w_f = x.shape
x = x.permute(0,2,1,3,4).contiguous().view(-1, c, h_f, w_f) # b*t c h w
feat_d1 = self.decoder1(feat_d2)
flow = self.upsample(feat_d1)
if self.training:
edge = self.edgeDetector(flow)
edge = edge.view(b, t, 1, h, w)
else:
edge = None
flow = flow.view(b, t, 2, h, w)
return flow, edge
def forward_bidirect_flow(self, masked_flows_bi, masks):
"""
Args:
masked_flows_bi: [masked_flows_f, masked_flows_b] | (b t-1 2 h w), (b t-1 2 h w)
masks: b t 1 h w
"""
masks_forward = masks[:, :-1, ...].contiguous()
masks_backward = masks[:, 1:, ...].contiguous()
# mask flow
masked_flows_forward = masked_flows_bi[0] * (1-masks_forward)
masked_flows_backward = masked_flows_bi[1] * (1-masks_backward)
# -- completion --
# forward
pred_flows_forward, pred_edges_forward = self.forward(masked_flows_forward, masks_forward)
# backward
masked_flows_backward = torch.flip(masked_flows_backward, dims=[1])
masks_backward = torch.flip(masks_backward, dims=[1])
pred_flows_backward, pred_edges_backward = self.forward(masked_flows_backward, masks_backward)
pred_flows_backward = torch.flip(pred_flows_backward, dims=[1])
if self.training:
pred_edges_backward = torch.flip(pred_edges_backward, dims=[1])
return [pred_flows_forward, pred_flows_backward], [pred_edges_forward, pred_edges_backward]
def combine_flow(self, masked_flows_bi, pred_flows_bi, masks):
masks_forward = masks[:, :-1, ...].contiguous()
masks_backward = masks[:, 1:, ...].contiguous()
pred_flows_forward = pred_flows_bi[0] * masks_forward + masked_flows_bi[0] * (1-masks_forward)
pred_flows_backward = pred_flows_bi[1] * masks_backward + masked_flows_bi[1] * (1-masks_backward)
return pred_flows_forward, pred_flows_backward