Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision | |
from model.modules.deformconv import ModulatedDeformConv2d | |
from .misc import constant_init | |
class SecondOrderDeformableAlignment(ModulatedDeformConv2d): | |
"""Second-order deformable alignment module.""" | |
def __init__(self, *args, **kwargs): | |
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 5) | |
super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs) | |
self.conv_offset = nn.Sequential( | |
nn.Conv2d(3 * self.out_channels, self.out_channels, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
nn.Conv2d(self.out_channels, 27 * self.deform_groups, 3, 1, 1), | |
) | |
self.init_offset() | |
def init_offset(self): | |
constant_init(self.conv_offset[-1], val=0, bias=0) | |
def forward(self, x, extra_feat): | |
out = self.conv_offset(extra_feat) | |
o1, o2, mask = torch.chunk(out, 3, dim=1) | |
# offset | |
offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1)) | |
offset_1, offset_2 = torch.chunk(offset, 2, dim=1) | |
offset = torch.cat([offset_1, offset_2], dim=1) | |
# mask | |
mask = torch.sigmoid(mask) | |
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, | |
self.stride, self.padding, | |
self.dilation, mask) | |
class BidirectionalPropagation(nn.Module): | |
def __init__(self, channel): | |
super(BidirectionalPropagation, self).__init__() | |
modules = ['backward_', 'forward_'] | |
self.deform_align = nn.ModuleDict() | |
self.backbone = nn.ModuleDict() | |
self.channel = channel | |
for i, module in enumerate(modules): | |
self.deform_align[module] = SecondOrderDeformableAlignment( | |
2 * channel, channel, 3, padding=1, deform_groups=16) | |
self.backbone[module] = nn.Sequential( | |
nn.Conv2d((2 + i) * channel, channel, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
nn.Conv2d(channel, channel, 3, 1, 1), | |
) | |
self.fusion = nn.Conv2d(2 * channel, channel, 1, 1, 0) | |
def forward(self, x): | |
""" | |
x shape : [b, t, c, h, w] | |
return [b, t, c, h, w] | |
""" | |
b, t, c, h, w = x.shape | |
feats = {} | |
feats['spatial'] = [x[:, i, :, :, :] for i in range(0, t)] | |
for module_name in ['backward_', 'forward_']: | |
feats[module_name] = [] | |
frame_idx = range(0, t) | |
mapping_idx = list(range(0, len(feats['spatial']))) | |
mapping_idx += mapping_idx[::-1] | |
if 'backward' in module_name: | |
frame_idx = frame_idx[::-1] | |
feat_prop = x.new_zeros(b, self.channel, h, w) | |
for i, idx in enumerate(frame_idx): | |
feat_current = feats['spatial'][mapping_idx[idx]] | |
if i > 0: | |
cond_n1 = feat_prop | |
# initialize second-order features | |
feat_n2 = torch.zeros_like(feat_prop) | |
cond_n2 = torch.zeros_like(cond_n1) | |
if i > 1: # second-order features | |
feat_n2 = feats[module_name][-2] | |
cond_n2 = feat_n2 | |
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1) # condition information, cond(flow warped 1st/2nd feature) | |
feat_prop = torch.cat([feat_prop, feat_n2], dim=1) # two order feat_prop -1 & -2 | |
feat_prop = self.deform_align[module_name](feat_prop, cond) | |
# fuse current features | |
feat = [feat_current] + \ | |
[feats[k][idx] for k in feats if k not in ['spatial', module_name]] \ | |
+ [feat_prop] | |
feat = torch.cat(feat, dim=1) | |
# embed current features | |
feat_prop = feat_prop + self.backbone[module_name](feat) | |
feats[module_name].append(feat_prop) | |
# end for | |
if 'backward' in module_name: | |
feats[module_name] = feats[module_name][::-1] | |
outputs = [] | |
for i in range(0, t): | |
align_feats = [feats[k].pop(0) for k in feats if k != 'spatial'] | |
align_feats = torch.cat(align_feats, dim=1) | |
outputs.append(self.fusion(align_feats)) | |
return torch.stack(outputs, dim=1) + x | |
class deconv(nn.Module): | |
def __init__(self, | |
input_channel, | |
output_channel, | |
kernel_size=3, | |
padding=0): | |
super().__init__() | |
self.conv = nn.Conv2d(input_channel, | |
output_channel, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=padding) | |
def forward(self, x): | |
x = F.interpolate(x, | |
scale_factor=2, | |
mode='bilinear', | |
align_corners=True) | |
return self.conv(x) | |
class P3DBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, use_residual=0, bias=True): | |
super().__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv3d(in_channels, out_channels, kernel_size=(1, kernel_size, kernel_size), | |
stride=(1, stride, stride), padding=(0, padding, padding), bias=bias), | |
nn.LeakyReLU(0.2, inplace=True) | |
) | |
self.conv2 = nn.Sequential( | |
nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), | |
padding=(2, 0, 0), dilation=(2, 1, 1), bias=bias) | |
) | |
self.use_residual = use_residual | |
def forward(self, feats): | |
feat1 = self.conv1(feats) | |
feat2 = self.conv2(feat1) | |
if self.use_residual: | |
output = feats + feat2 | |
else: | |
output = feat2 | |
return output | |
class EdgeDetection(nn.Module): | |
def __init__(self, in_ch=2, out_ch=1, mid_ch=16): | |
super().__init__() | |
self.projection = nn.Sequential( | |
nn.Conv2d(in_ch, mid_ch, 3, 1, 1), | |
nn.LeakyReLU(0.2, inplace=True) | |
) | |
self.mid_layer_1 = nn.Sequential( | |
nn.Conv2d(mid_ch, mid_ch, 3, 1, 1), | |
nn.LeakyReLU(0.2, inplace=True) | |
) | |
self.mid_layer_2 = nn.Sequential( | |
nn.Conv2d(mid_ch, mid_ch, 3, 1, 1) | |
) | |
self.l_relu = nn.LeakyReLU(0.01, inplace=True) | |
self.out_layer = nn.Conv2d(mid_ch, out_ch, 1, 1, 0) | |
def forward(self, flow): | |
flow = self.projection(flow) | |
edge = self.mid_layer_1(flow) | |
edge = self.mid_layer_2(edge) | |
edge = self.l_relu(flow + edge) | |
edge = self.out_layer(edge) | |
edge = torch.sigmoid(edge) | |
return edge | |
class RecurrentFlowCompleteNet(nn.Module): | |
def __init__(self, model_path=None): | |
super().__init__() | |
self.downsample = nn.Sequential( | |
nn.Conv3d(3, 32, kernel_size=(1, 5, 5), stride=(1, 2, 2), | |
padding=(0, 2, 2), padding_mode='replicate'), | |
nn.LeakyReLU(0.2, inplace=True) | |
) | |
self.encoder1 = nn.Sequential( | |
P3DBlock(32, 32, 3, 1, 1), | |
nn.LeakyReLU(0.2, inplace=True), | |
P3DBlock(32, 64, 3, 2, 1), | |
nn.LeakyReLU(0.2, inplace=True) | |
) # 4x | |
self.encoder2 = nn.Sequential( | |
P3DBlock(64, 64, 3, 1, 1), | |
nn.LeakyReLU(0.2, inplace=True), | |
P3DBlock(64, 128, 3, 2, 1), | |
nn.LeakyReLU(0.2, inplace=True) | |
) # 8x | |
self.mid_dilation = nn.Sequential( | |
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 3, 3), dilation=(1, 3, 3)), # p = d*(k-1)/2 | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 2, 2), dilation=(1, 2, 2)), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 1, 1), dilation=(1, 1, 1)), | |
nn.LeakyReLU(0.2, inplace=True) | |
) | |
# feature propagation module | |
self.feat_prop_module = BidirectionalPropagation(128) | |
self.decoder2 = nn.Sequential( | |
nn.Conv2d(128, 128, 3, 1, 1), | |
nn.LeakyReLU(0.2, inplace=True), | |
deconv(128, 64, 3, 1), | |
nn.LeakyReLU(0.2, inplace=True) | |
) # 4x | |
self.decoder1 = nn.Sequential( | |
nn.Conv2d(64, 64, 3, 1, 1), | |
nn.LeakyReLU(0.2, inplace=True), | |
deconv(64, 32, 3, 1), | |
nn.LeakyReLU(0.2, inplace=True) | |
) # 2x | |
self.upsample = nn.Sequential( | |
nn.Conv2d(32, 32, 3, padding=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
deconv(32, 2, 3, 1) | |
) | |
# edge loss | |
self.edgeDetector = EdgeDetection(in_ch=2, out_ch=1, mid_ch=16) | |
# Need to initial the weights of MSDeformAttn specifically | |
for m in self.modules(): | |
if isinstance(m, SecondOrderDeformableAlignment): | |
m.init_offset() | |
if model_path is not None: | |
print('Pretrained flow completion model has loaded...') | |
ckpt = torch.load(model_path, map_location='cpu') | |
self.load_state_dict(ckpt, strict=True) | |
def forward(self, masked_flows, masks): | |
# masked_flows: b t-1 2 h w | |
# masks: b t-1 2 h w | |
b, t, _, h, w = masked_flows.size() | |
masked_flows = masked_flows.permute(0,2,1,3,4) | |
masks = masks.permute(0,2,1,3,4) | |
inputs = torch.cat((masked_flows, masks), dim=1) | |
x = self.downsample(inputs) | |
feat_e1 = self.encoder1(x) | |
feat_e2 = self.encoder2(feat_e1) # b c t h w | |
feat_mid = self.mid_dilation(feat_e2) # b c t h w | |
feat_mid = feat_mid.permute(0,2,1,3,4) # b t c h w | |
feat_prop = self.feat_prop_module(feat_mid) | |
feat_prop = feat_prop.view(-1, 128, h//8, w//8) # b*t c h w | |
_, c, _, h_f, w_f = feat_e1.shape | |
feat_e1 = feat_e1.permute(0,2,1,3,4).contiguous().view(-1, c, h_f, w_f) # b*t c h w | |
feat_d2 = self.decoder2(feat_prop) + feat_e1 | |
_, c, _, h_f, w_f = x.shape | |
x = x.permute(0,2,1,3,4).contiguous().view(-1, c, h_f, w_f) # b*t c h w | |
feat_d1 = self.decoder1(feat_d2) | |
flow = self.upsample(feat_d1) | |
if self.training: | |
edge = self.edgeDetector(flow) | |
edge = edge.view(b, t, 1, h, w) | |
else: | |
edge = None | |
flow = flow.view(b, t, 2, h, w) | |
return flow, edge | |
def forward_bidirect_flow(self, masked_flows_bi, masks): | |
""" | |
Args: | |
masked_flows_bi: [masked_flows_f, masked_flows_b] | (b t-1 2 h w), (b t-1 2 h w) | |
masks: b t 1 h w | |
""" | |
masks_forward = masks[:, :-1, ...].contiguous() | |
masks_backward = masks[:, 1:, ...].contiguous() | |
# mask flow | |
masked_flows_forward = masked_flows_bi[0] * (1-masks_forward) | |
masked_flows_backward = masked_flows_bi[1] * (1-masks_backward) | |
# -- completion -- | |
# forward | |
pred_flows_forward, pred_edges_forward = self.forward(masked_flows_forward, masks_forward) | |
# backward | |
masked_flows_backward = torch.flip(masked_flows_backward, dims=[1]) | |
masks_backward = torch.flip(masks_backward, dims=[1]) | |
pred_flows_backward, pred_edges_backward = self.forward(masked_flows_backward, masks_backward) | |
pred_flows_backward = torch.flip(pred_flows_backward, dims=[1]) | |
if self.training: | |
pred_edges_backward = torch.flip(pred_edges_backward, dims=[1]) | |
return [pred_flows_forward, pred_flows_backward], [pred_edges_forward, pred_edges_backward] | |
def combine_flow(self, masked_flows_bi, pred_flows_bi, masks): | |
masks_forward = masks[:, :-1, ...].contiguous() | |
masks_backward = masks[:, 1:, ...].contiguous() | |
pred_flows_forward = pred_flows_bi[0] * masks_forward + masked_flows_bi[0] * (1-masks_forward) | |
pred_flows_backward = pred_flows_bi[1] * masks_backward + masked_flows_bi[1] * (1-masks_backward) | |
return pred_flows_forward, pred_flows_backward | |