ProPainter / core /metrics.py
sczhou's picture
init code
320e465
raw
history blame contribute delete
No virus
20.6 kB
import numpy as np
from skimage import measure
from scipy import linalg
import torch
import torch.nn as nn
import torch.nn.functional as F
from core.utils import to_tensors
def calculate_epe(flow1, flow2):
"""Calculate End point errors."""
epe = torch.sum((flow1 - flow2)**2, dim=1).sqrt()
epe = epe.view(-1)
return epe.mean().item()
def calculate_psnr(img1, img2):
"""Calculate PSNR (Peak Signal-to-Noise Ratio).
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
Args:
img1 (ndarray): Images with range [0, 255].
img2 (ndarray): Images with range [0, 255].
Returns:
float: psnr result.
"""
assert img1.shape == img2.shape, \
(f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20. * np.log10(255. / np.sqrt(mse))
def calc_psnr_and_ssim(img1, img2):
"""Calculate PSNR and SSIM for images.
img1: ndarray, range [0, 255]
img2: ndarray, range [0, 255]
"""
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
psnr = calculate_psnr(img1, img2)
ssim = measure.compare_ssim(img1,
img2,
data_range=255,
multichannel=True,
win_size=65)
return psnr, ssim
###########################
# I3D models
###########################
def init_i3d_model(i3d_model_path):
print(f"[Loading I3D model from {i3d_model_path} for FID score ..]")
i3d_model = InceptionI3d(400, in_channels=3, final_endpoint='Logits')
i3d_model.load_state_dict(torch.load(i3d_model_path))
i3d_model.to(torch.device('cuda:0'))
return i3d_model
def calculate_i3d_activations(video1, video2, i3d_model, device):
"""Calculate VFID metric.
video1: list[PIL.Image]
video2: list[PIL.Image]
"""
video1 = to_tensors()(video1).unsqueeze(0).to(device)
video2 = to_tensors()(video2).unsqueeze(0).to(device)
video1_activations = get_i3d_activations(
video1, i3d_model).cpu().numpy().flatten()
video2_activations = get_i3d_activations(
video2, i3d_model).cpu().numpy().flatten()
return video1_activations, video2_activations
def calculate_vfid(real_activations, fake_activations):
"""
Given two distribution of features, compute the FID score between them
Params:
real_activations: list[ndarray]
fake_activations: list[ndarray]
"""
m1 = np.mean(real_activations, axis=0)
m2 = np.mean(fake_activations, axis=0)
s1 = np.cov(real_activations, rowvar=False)
s2 = np.cov(fake_activations, rowvar=False)
return calculate_frechet_distance(m1, s1, m2, s2)
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representive data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representive data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) + # NOQA
np.trace(sigma2) - 2 * tr_covmean)
def get_i3d_activations(batched_video,
i3d_model,
target_endpoint='Logits',
flatten=True,
grad_enabled=False):
"""
Get features from i3d model and flatten them to 1d feature,
valid target endpoints are defined in InceptionI3d.VALID_ENDPOINTS
VALID_ENDPOINTS = (
'Conv3d_1a_7x7',
'MaxPool3d_2a_3x3',
'Conv3d_2b_1x1',
'Conv3d_2c_3x3',
'MaxPool3d_3a_3x3',
'Mixed_3b',
'Mixed_3c',
'MaxPool3d_4a_3x3',
'Mixed_4b',
'Mixed_4c',
'Mixed_4d',
'Mixed_4e',
'Mixed_4f',
'MaxPool3d_5a_2x2',
'Mixed_5b',
'Mixed_5c',
'Logits',
'Predictions',
)
"""
with torch.set_grad_enabled(grad_enabled):
feat = i3d_model.extract_features(batched_video.transpose(1, 2),
target_endpoint)
if flatten:
feat = feat.view(feat.size(0), -1)
return feat
# This code is from https://github.com/piergiaj/pytorch-i3d/blob/master/pytorch_i3d.py
# I only fix flake8 errors and do some cleaning here
class MaxPool3dSamePadding(nn.MaxPool3d):
def compute_pad(self, dim, s):
if s % self.stride[dim] == 0:
return max(self.kernel_size[dim] - self.stride[dim], 0)
else:
return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
(batch, channel, t, h, w) = x.size()
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
x = F.pad(x, pad)
return super(MaxPool3dSamePadding, self).forward(x)
class Unit3D(nn.Module):
def __init__(self,
in_channels,
output_channels,
kernel_shape=(1, 1, 1),
stride=(1, 1, 1),
padding=0,
activation_fn=F.relu,
use_batch_norm=True,
use_bias=False,
name='unit_3d'):
"""Initializes Unit3D module."""
super(Unit3D, self).__init__()
self._output_channels = output_channels
self._kernel_shape = kernel_shape
self._stride = stride
self._use_batch_norm = use_batch_norm
self._activation_fn = activation_fn
self._use_bias = use_bias
self.name = name
self.padding = padding
self.conv3d = nn.Conv3d(
in_channels=in_channels,
out_channels=self._output_channels,
kernel_size=self._kernel_shape,
stride=self._stride,
padding=0, # we always want padding to be 0 here. We will
# dynamically pad based on input size in forward function
bias=self._use_bias)
if self._use_batch_norm:
self.bn = nn.BatchNorm3d(self._output_channels,
eps=0.001,
momentum=0.01)
def compute_pad(self, dim, s):
if s % self._stride[dim] == 0:
return max(self._kernel_shape[dim] - self._stride[dim], 0)
else:
return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
(batch, channel, t, h, w) = x.size()
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
x = F.pad(x, pad)
x = self.conv3d(x)
if self._use_batch_norm:
x = self.bn(x)
if self._activation_fn is not None:
x = self._activation_fn(x)
return x
class InceptionModule(nn.Module):
def __init__(self, in_channels, out_channels, name):
super(InceptionModule, self).__init__()
self.b0 = Unit3D(in_channels=in_channels,
output_channels=out_channels[0],
kernel_shape=[1, 1, 1],
padding=0,
name=name + '/Branch_0/Conv3d_0a_1x1')
self.b1a = Unit3D(in_channels=in_channels,
output_channels=out_channels[1],
kernel_shape=[1, 1, 1],
padding=0,
name=name + '/Branch_1/Conv3d_0a_1x1')
self.b1b = Unit3D(in_channels=out_channels[1],
output_channels=out_channels[2],
kernel_shape=[3, 3, 3],
name=name + '/Branch_1/Conv3d_0b_3x3')
self.b2a = Unit3D(in_channels=in_channels,
output_channels=out_channels[3],
kernel_shape=[1, 1, 1],
padding=0,
name=name + '/Branch_2/Conv3d_0a_1x1')
self.b2b = Unit3D(in_channels=out_channels[3],
output_channels=out_channels[4],
kernel_shape=[3, 3, 3],
name=name + '/Branch_2/Conv3d_0b_3x3')
self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
stride=(1, 1, 1),
padding=0)
self.b3b = Unit3D(in_channels=in_channels,
output_channels=out_channels[5],
kernel_shape=[1, 1, 1],
padding=0,
name=name + '/Branch_3/Conv3d_0b_1x1')
self.name = name
def forward(self, x):
b0 = self.b0(x)
b1 = self.b1b(self.b1a(x))
b2 = self.b2b(self.b2a(x))
b3 = self.b3b(self.b3a(x))
return torch.cat([b0, b1, b2, b3], dim=1)
class InceptionI3d(nn.Module):
"""Inception-v1 I3D architecture.
The model is introduced in:
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Joao Carreira, Andrew Zisserman
https://arxiv.org/pdf/1705.07750v1.pdf.
See also the Inception architecture, introduced in:
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
http://arxiv.org/pdf/1409.4842v1.pdf.
"""
# Endpoints of the model in order. During construction, all the endpoints up
# to a designated `final_endpoint` are returned in a dictionary as the
# second return value.
VALID_ENDPOINTS = (
'Conv3d_1a_7x7',
'MaxPool3d_2a_3x3',
'Conv3d_2b_1x1',
'Conv3d_2c_3x3',
'MaxPool3d_3a_3x3',
'Mixed_3b',
'Mixed_3c',
'MaxPool3d_4a_3x3',
'Mixed_4b',
'Mixed_4c',
'Mixed_4d',
'Mixed_4e',
'Mixed_4f',
'MaxPool3d_5a_2x2',
'Mixed_5b',
'Mixed_5c',
'Logits',
'Predictions',
)
def __init__(self,
num_classes=400,
spatial_squeeze=True,
final_endpoint='Logits',
name='inception_i3d',
in_channels=3,
dropout_keep_prob=0.5):
"""Initializes I3D model instance.
Args:
num_classes: The number of outputs in the logit layer (default 400, which
matches the Kinetics dataset).
spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
before returning (default True).
final_endpoint: The model contains many possible endpoints.
`final_endpoint` specifies the last endpoint for the model to be built
up to. In addition to the output at `final_endpoint`, all the outputs
at endpoints up to `final_endpoint` will also be returned, in a
dictionary. `final_endpoint` must be one of
InceptionI3d.VALID_ENDPOINTS (default 'Logits').
name: A string (optional). The name of this module.
Raises:
ValueError: if `final_endpoint` is not recognized.
"""
if final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError('Unknown final endpoint %s' % final_endpoint)
super(InceptionI3d, self).__init__()
self._num_classes = num_classes
self._spatial_squeeze = spatial_squeeze
self._final_endpoint = final_endpoint
self.logits = None
if self._final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError('Unknown final endpoint %s' %
self._final_endpoint)
self.end_points = {}
end_point = 'Conv3d_1a_7x7'
self.end_points[end_point] = Unit3D(in_channels=in_channels,
output_channels=64,
kernel_shape=[7, 7, 7],
stride=(2, 2, 2),
padding=(3, 3, 3),
name=name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'MaxPool3d_2a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(
kernel_size=[1, 3, 3], stride=(1, 2, 2), padding=0)
if self._final_endpoint == end_point:
return
end_point = 'Conv3d_2b_1x1'
self.end_points[end_point] = Unit3D(in_channels=64,
output_channels=64,
kernel_shape=[1, 1, 1],
padding=0,
name=name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'Conv3d_2c_3x3'
self.end_points[end_point] = Unit3D(in_channels=64,
output_channels=192,
kernel_shape=[3, 3, 3],
padding=1,
name=name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'MaxPool3d_3a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(
kernel_size=[1, 3, 3], stride=(1, 2, 2), padding=0)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_3b'
self.end_points[end_point] = InceptionModule(192,
[64, 96, 128, 16, 32, 32],
name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_3c'
self.end_points[end_point] = InceptionModule(
256, [128, 128, 192, 32, 96, 64], name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'MaxPool3d_4a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(
kernel_size=[3, 3, 3], stride=(2, 2, 2), padding=0)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_4b'
self.end_points[end_point] = InceptionModule(
128 + 192 + 96 + 64, [192, 96, 208, 16, 48, 64], name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_4c'
self.end_points[end_point] = InceptionModule(
192 + 208 + 48 + 64, [160, 112, 224, 24, 64, 64], name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_4d'
self.end_points[end_point] = InceptionModule(
160 + 224 + 64 + 64, [128, 128, 256, 24, 64, 64], name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_4e'
self.end_points[end_point] = InceptionModule(
128 + 256 + 64 + 64, [112, 144, 288, 32, 64, 64], name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_4f'
self.end_points[end_point] = InceptionModule(
112 + 288 + 64 + 64, [256, 160, 320, 32, 128, 128],
name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'MaxPool3d_5a_2x2'
self.end_points[end_point] = MaxPool3dSamePadding(
kernel_size=[2, 2, 2], stride=(2, 2, 2), padding=0)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_5b'
self.end_points[end_point] = InceptionModule(
256 + 320 + 128 + 128, [256, 160, 320, 32, 128, 128],
name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'Mixed_5c'
self.end_points[end_point] = InceptionModule(
256 + 320 + 128 + 128, [384, 192, 384, 48, 128, 128],
name + end_point)
if self._final_endpoint == end_point:
return
end_point = 'Logits'
self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7], stride=(1, 1, 1))
self.dropout = nn.Dropout(dropout_keep_prob)
self.logits = Unit3D(in_channels=384 + 384 + 128 + 128,
output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name='logits')
self.build()
def replace_logits(self, num_classes):
self._num_classes = num_classes
self.logits = Unit3D(in_channels=384 + 384 + 128 + 128,
output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name='logits')
def build(self):
for k in self.end_points.keys():
self.add_module(k, self.end_points[k])
def forward(self, x):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](
x) # use _modules to work with dataparallel
x = self.logits(self.dropout(self.avg_pool(x)))
if self._spatial_squeeze:
logits = x.squeeze(3).squeeze(3)
# logits is batch X time X classes, which is what we want to work with
return logits
def extract_features(self, x, target_endpoint='Logits'):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x)
if end_point == target_endpoint:
break
if target_endpoint == 'Logits':
return x.mean(4).mean(3).mean(2)
else:
return x