ProPainter / inference_propainter.py
sczhou's picture
update.
87ca85b
# -*- coding: utf-8 -*-
import os
import cv2
import argparse
import imageio
import numpy as np
import scipy.ndimage
from PIL import Image
from tqdm import tqdm
import torch
import torchvision
from model.modules.flow_comp_raft import RAFT_bi
from model.recurrent_flow_completion import RecurrentFlowCompleteNet
from model.propainter import InpaintGenerator
from utils.download_util import load_file_from_url
from core.utils import to_tensors
from model.misc import get_device
import warnings
warnings.filterwarnings("ignore")
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/'
def imwrite(img, file_path, params=None, auto_mkdir=True):
if auto_mkdir:
dir_name = os.path.abspath(os.path.dirname(file_path))
os.makedirs(dir_name, exist_ok=True)
return cv2.imwrite(file_path, img, params)
# resize frames
def resize_frames(frames, size=None):
if size is not None:
out_size = size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
frames = [f.resize(process_size) for f in frames]
else:
out_size = frames[0].size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
if not out_size == process_size:
frames = [f.resize(process_size) for f in frames]
return frames, process_size, out_size
# read frames from video
def read_frame_from_videos(frame_root):
if frame_root.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
video_name = os.path.basename(frame_root)[:-4]
vframes, aframes, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec') # RGB
frames = list(vframes.numpy())
frames = [Image.fromarray(f) for f in frames]
fps = info['video_fps']
else:
video_name = os.path.basename(frame_root)
frames = []
fr_lst = sorted(os.listdir(frame_root))
for fr in fr_lst:
frame = cv2.imread(os.path.join(frame_root, fr))
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frames.append(frame)
fps = None
size = frames[0].size
return frames, fps, size, video_name
def binary_mask(mask, th=0.1):
mask[mask>th] = 1
mask[mask<=th] = 0
return mask
# read frame-wise masks
def read_mask(mpath, length, size, flow_mask_dilates=8, mask_dilates=5):
masks_img = []
masks_dilated = []
flow_masks = []
if mpath.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
masks_img = [Image.open(mpath)]
else:
mnames = sorted(os.listdir(mpath))
for mp in mnames:
masks_img.append(Image.open(os.path.join(mpath, mp)))
for mask_img in masks_img:
if size is not None:
mask_img = mask_img.resize(size, Image.NEAREST)
mask_img = np.array(mask_img.convert('L'))
# Dilate 8 pixel so that all known pixel is trustworthy
if flow_mask_dilates > 0:
flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=flow_mask_dilates).astype(np.uint8)
else:
flow_mask_img = binary_mask(mask_img).astype(np.uint8)
# Close the small holes inside the foreground objects
# flow_mask_img = cv2.morphologyEx(flow_mask_img, cv2.MORPH_CLOSE, np.ones((21, 21),np.uint8)).astype(bool)
# flow_mask_img = scipy.ndimage.binary_fill_holes(flow_mask_img).astype(np.uint8)
flow_masks.append(Image.fromarray(flow_mask_img * 255))
if mask_dilates > 0:
mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=mask_dilates).astype(np.uint8)
else:
mask_img = binary_mask(mask_img).astype(np.uint8)
masks_dilated.append(Image.fromarray(mask_img * 255))
if len(masks_img) == 1:
flow_masks = flow_masks * length
masks_dilated = masks_dilated * length
return flow_masks, masks_dilated
def extrapolation(video_ori, scale):
"""Prepares the data for video outpainting.
"""
nFrame = len(video_ori)
imgW, imgH = video_ori[0].size
# Defines new FOV.
imgH_extr = int(scale[0] * imgH)
imgW_extr = int(scale[1] * imgW)
imgH_extr = imgH_extr - imgH_extr % 8
imgW_extr = imgW_extr - imgW_extr % 8
H_start = int((imgH_extr - imgH) / 2)
W_start = int((imgW_extr - imgW) / 2)
# Extrapolates the FOV for video.
frames = []
for v in video_ori:
frame = np.zeros(((imgH_extr, imgW_extr, 3)), dtype=np.uint8)
frame[H_start: H_start + imgH, W_start: W_start + imgW, :] = v
frames.append(Image.fromarray(frame))
# Generates the mask for missing region.
masks_dilated = []
flow_masks = []
dilate_h = 4 if H_start > 10 else 0
dilate_w = 4 if W_start > 10 else 0
mask = np.ones(((imgH_extr, imgW_extr)), dtype=np.uint8)
mask[H_start+dilate_h: H_start+imgH-dilate_h,
W_start+dilate_w: W_start+imgW-dilate_w] = 0
flow_masks.append(Image.fromarray(mask * 255))
mask[H_start: H_start+imgH, W_start: W_start+imgW] = 0
masks_dilated.append(Image.fromarray(mask * 255))
flow_masks = flow_masks * nFrame
masks_dilated = masks_dilated * nFrame
return frames, flow_masks, masks_dilated, (imgW_extr, imgH_extr)
def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1):
ref_index = []
if ref_num == -1:
for i in range(0, length, ref_stride):
if i not in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2))
end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2))
for i in range(start_idx, end_idx, ref_stride):
if i not in neighbor_ids:
if len(ref_index) > ref_num:
break
ref_index.append(i)
return ref_index
if __name__ == '__main__':
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = get_device()
parser = argparse.ArgumentParser()
parser.add_argument(
'-i', '--video', type=str, default='inputs/object_removal/bmx-trees', help='Path of the input video or image folder.')
parser.add_argument(
'-m', '--mask', type=str, default='inputs/object_removal/bmx-trees_mask', help='Path of the mask(s) or mask folder.')
parser.add_argument(
'-o', '--output', type=str, default='results', help='Output folder. Default: results')
parser.add_argument(
"--resize_ratio", type=float, default=1.0, help='Resize scale for processing video.')
parser.add_argument(
'--height', type=int, default=-1, help='Height of the processing video.')
parser.add_argument(
'--width', type=int, default=-1, help='Width of the processing video.')
parser.add_argument(
'--mask_dilation', type=int, default=4, help='Mask dilation for video and flow masking.')
parser.add_argument(
"--ref_stride", type=int, default=10, help='Stride of global reference frames.')
parser.add_argument(
"--neighbor_length", type=int, default=10, help='Length of local neighboring frames.')
parser.add_argument(
"--subvideo_length", type=int, default=80, help='Length of sub-video for long video inference.')
parser.add_argument(
"--raft_iter", type=int, default=20, help='Iterations for RAFT inference.')
parser.add_argument(
'--mode', default='video_inpainting', choices=['video_inpainting', 'video_outpainting'], help="Modes: video_inpainting / video_outpainting")
parser.add_argument(
'--scale_h', type=float, default=1.0, help='Outpainting scale of height for video_outpainting mode.')
parser.add_argument(
'--scale_w', type=float, default=1.2, help='Outpainting scale of width for video_outpainting mode.')
parser.add_argument(
'--save_fps', type=int, default=24, help='Frame per second. Default: 24')
parser.add_argument(
'--save_frames', action='store_true', help='Save output frames. Default: False')
parser.add_argument(
'--fp16', action='store_true', help='Use fp16 (half precision) during inference. Default: fp32 (single precision).')
args = parser.parse_args()
# Use fp16 precision during inference to reduce running memory cost
use_half = True if args.fp16 else False
if device == torch.device('cpu'):
use_half = False
frames, fps, size, video_name = read_frame_from_videos(args.video)
if not args.width == -1 and not args.height == -1:
size = (args.width, args.height)
if not args.resize_ratio == 1.0:
size = (int(args.resize_ratio * size[0]), int(args.resize_ratio * size[1]))
frames, size, out_size = resize_frames(frames, size)
fps = args.save_fps if fps is None else fps
save_root = os.path.join(args.output, video_name)
if not os.path.exists(save_root):
os.makedirs(save_root, exist_ok=True)
if args.mode == 'video_inpainting':
frames_len = len(frames)
flow_masks, masks_dilated = read_mask(args.mask, frames_len, size,
flow_mask_dilates=args.mask_dilation,
mask_dilates=args.mask_dilation)
w, h = size
elif args.mode == 'video_outpainting':
assert args.scale_h is not None and args.scale_w is not None, 'Please provide a outpainting scale (s_h, s_w).'
frames, flow_masks, masks_dilated, size = extrapolation(frames, (args.scale_h, args.scale_w))
w, h = size
else:
raise NotImplementedError
# for saving the masked frames or video
masked_frame_for_save = []
for i in range(len(frames)):
mask_ = np.expand_dims(np.array(masks_dilated[i]),2).repeat(3, axis=2)/255.
img = np.array(frames[i])
green = np.zeros([h, w, 3])
green[:,:,1] = 255
alpha = 0.6
# alpha = 1.0
fuse_img = (1-alpha)*img + alpha*green
fuse_img = mask_ * fuse_img + (1-mask_)*img
masked_frame_for_save.append(fuse_img.astype(np.uint8))
frames_inp = [np.array(f).astype(np.uint8) for f in frames]
frames = to_tensors()(frames).unsqueeze(0) * 2 - 1
flow_masks = to_tensors()(flow_masks).unsqueeze(0)
masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
frames, flow_masks, masks_dilated = frames.to(device), flow_masks.to(device), masks_dilated.to(device)
##############################################
# set up RAFT and flow competition model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'),
model_dir='weights', progress=True, file_name=None)
fix_raft = RAFT_bi(ckpt_path, device)
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'),
model_dir='weights', progress=True, file_name=None)
fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path)
for p in fix_flow_complete.parameters():
p.requires_grad = False
fix_flow_complete.to(device)
fix_flow_complete.eval()
##############################################
# set up ProPainter model
##############################################
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'),
model_dir='weights', progress=True, file_name=None)
model = InpaintGenerator(model_path=ckpt_path).to(device)
model.eval()
##############################################
# ProPainter inference
##############################################
video_length = frames.size(1)
print(f'\nProcessing: {video_name} [{video_length} frames]...')
with torch.no_grad():
# ---- compute flow ----
if frames.size(-1) <= 640:
short_clip_len = 12
elif frames.size(-1) <= 720:
short_clip_len = 8
elif frames.size(-1) <= 1280:
short_clip_len = 4
else:
short_clip_len = 2
# use fp32 for RAFT
if frames.size(1) > short_clip_len:
gt_flows_f_list, gt_flows_b_list = [], []
for f in range(0, video_length, short_clip_len):
end_f = min(video_length, f + short_clip_len)
if f == 0:
flows_f, flows_b = fix_raft(frames[:,f:end_f], iters=args.raft_iter)
else:
flows_f, flows_b = fix_raft(frames[:,f-1:end_f], iters=args.raft_iter)
gt_flows_f_list.append(flows_f)
gt_flows_b_list.append(flows_b)
torch.cuda.empty_cache()
gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
gt_flows_bi = (gt_flows_f, gt_flows_b)
else:
gt_flows_bi = fix_raft(frames, iters=args.raft_iter)
torch.cuda.empty_cache()
if use_half:
frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())
fix_flow_complete = fix_flow_complete.half()
model = model.half()
# ---- complete flow ----
flow_length = gt_flows_bi[0].size(1)
if flow_length > args.subvideo_length:
pred_flows_f, pred_flows_b = [], []
pad_len = 5
for f in range(0, flow_length, args.subvideo_length):
s_f = max(0, f - pad_len)
e_f = min(flow_length, f + args.subvideo_length + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(flow_length, f + args.subvideo_length)
pred_flows_bi_sub, _ = fix_flow_complete.forward_bidirect_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
flow_masks[:, s_f:e_f+1])
pred_flows_bi_sub = fix_flow_complete.combine_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
pred_flows_bi_sub,
flow_masks[:, s_f:e_f+1])
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
pred_flows_f = torch.cat(pred_flows_f, dim=1)
pred_flows_b = torch.cat(pred_flows_b, dim=1)
pred_flows_bi = (pred_flows_f, pred_flows_b)
else:
pred_flows_bi, _ = fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
pred_flows_bi = fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
torch.cuda.empty_cache()
# ---- image propagation ----
masked_frames = frames * (1 - masks_dilated)
subvideo_length_img_prop = min(100, args.subvideo_length) # ensure a minimum of 100 frames for image propagation
if video_length > subvideo_length_img_prop:
updated_frames, updated_masks = [], []
pad_len = 10
for f in range(0, video_length, subvideo_length_img_prop):
s_f = max(0, f - pad_len)
e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)
b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
prop_imgs_sub, updated_local_masks_sub = model.img_propagation(masked_frames[:, s_f:e_f],
pred_flows_bi_sub,
masks_dilated[:, s_f:e_f],
'nearest')
updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
updated_frames = torch.cat(updated_frames, dim=1)
updated_masks = torch.cat(updated_masks, dim=1)
else:
b, t, _, _, _ = masks_dilated.size()
prop_imgs, updated_local_masks = model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
updated_masks = updated_local_masks.view(b, t, 1, h, w)
torch.cuda.empty_cache()
ori_frames = frames_inp
comp_frames = [None] * video_length
neighbor_stride = args.neighbor_length // 2
if video_length > args.subvideo_length:
ref_num = args.subvideo_length // args.ref_stride
else:
ref_num = -1
# ---- feature propagation + transformer ----
for f in tqdm(range(0, video_length, neighbor_stride)):
neighbor_ids = [
i for i in range(max(0, f - neighbor_stride),
min(video_length, f + neighbor_stride + 1))
]
ref_ids = get_ref_index(f, neighbor_ids, video_length, args.ref_stride, ref_num)
selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])
with torch.no_grad():
# 1.0 indicates mask
l_t = len(neighbor_ids)
# pred_img = selected_imgs # results of image propagation
pred_img = model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)
pred_img = pred_img.view(-1, 3, h, w)
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
binary_masks = masks_dilated[0, neighbor_ids, :, :, :].cpu().permute(
0, 2, 3, 1).numpy().astype(np.uint8)
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
+ ori_frames[idx] * (1 - binary_masks[i])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5
comp_frames[idx] = comp_frames[idx].astype(np.uint8)
torch.cuda.empty_cache()
# save each frame
if args.save_frames:
for idx in range(video_length):
f = comp_frames[idx]
f = cv2.resize(f, out_size, interpolation = cv2.INTER_CUBIC)
f = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
img_save_root = os.path.join(save_root, 'frames', str(idx).zfill(4)+'.png')
imwrite(f, img_save_root)
# if args.mode == 'video_outpainting':
# comp_frames = [i[10:-10,10:-10] for i in comp_frames]
# masked_frame_for_save = [i[10:-10,10:-10] for i in masked_frame_for_save]
# save videos frame
masked_frame_for_save = [cv2.resize(f, out_size) for f in masked_frame_for_save]
comp_frames = [cv2.resize(f, out_size) for f in comp_frames]
imageio.mimwrite(os.path.join(save_root, 'masked_in.mp4'), masked_frame_for_save, fps=fps, quality=7)
imageio.mimwrite(os.path.join(save_root, 'inpaint_out.mp4'), comp_frames, fps=fps, quality=7)
print(f'\nAll results are saved in {save_root}')
torch.cuda.empty_cache()