Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import soundfile as sf | |
from datetime import datetime | |
from time import time as ttime | |
from my_utils import load_audio | |
from transformers import pipeline | |
from text.cleaner import clean_text | |
from polyglot.detect import Detector | |
from feature_extractor import cnhubert | |
from timeit import default_timer as timer | |
from text import cleaned_text_to_sequence | |
from module.models import SynthesizerTrn | |
from module.mel_processing import spectrogram_torch | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import os,re,sys,LangSegment,librosa,pdb,torch,pytz,random | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
import logging | |
logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
logging.getLogger("urllib3").setLevel(logging.ERROR) | |
logging.getLogger("httpcore").setLevel(logging.ERROR) | |
logging.getLogger("httpx").setLevel(logging.ERROR) | |
logging.getLogger("asyncio").setLevel(logging.ERROR) | |
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
logging.getLogger("multipart").setLevel(logging.WARNING) | |
from download import * | |
download() | |
if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
tz = pytz.timezone('Asia/Singapore') | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def abs_path(dir): | |
global_dir = os.path.dirname(os.path.abspath(sys.argv[0])) | |
return(os.path.join(global_dir, dir)) | |
gpt_path = abs_path("MODELS/22/22.ckpt") | |
sovits_path=abs_path("MODELS/22/22.pth") | |
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base") | |
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large") | |
if not os.path.exists(cnhubert_base_path): | |
cnhubert_base_path = "TencentGameMate/chinese-hubert-base" | |
if not os.path.exists(bert_path): | |
bert_path = "hfl/chinese-roberta-wwm-ext-large" | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
whisper_path = os.environ.get("whisper_path", "pretrained_models/whisper-tiny") | |
if not os.path.exists(whisper_path): | |
whisper_path = "openai/whisper-tiny" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=whisper_path, | |
chunk_length_s=30, | |
device=device,) | |
is_half = eval( | |
os.environ.get("is_half", "True" if torch.cuda.is_available() else "False") | |
) | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
def change_sovits_weights(sovits_path): | |
global vq_model, hps | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
hps = dict_s2["config"] | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model | |
) | |
if ("pretrained" not in sovits_path): | |
del vq_model.enc_q | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
with open("./sweight.txt", "w", encoding="utf-8") as f: | |
f.write(sovits_path) | |
change_sovits_weights(sovits_path) | |
def change_gpt_weights(gpt_path): | |
global hz, max_sec, t2s_model, config | |
hz = 50 | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) | |
change_gpt_weights(gpt_path) | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
dict_language = { | |
("English"): "en" | |
} | |
def splite_en_inf(sentence, language): | |
pattern = re.compile(r'[a-zA-Z ]+') | |
textlist = [] | |
langlist = [] | |
pos = 0 | |
for match in pattern.finditer(sentence): | |
start, end = match.span() | |
if start > pos: | |
textlist.append(sentence[pos:start]) | |
langlist.append(language) | |
textlist.append(sentence[start:end]) | |
langlist.append("en") | |
pos = end | |
if pos < len(sentence): | |
textlist.append(sentence[pos:]) | |
langlist.append(language) | |
# Merge punctuation into previous word | |
for i in range(len(textlist)-1, 0, -1): | |
if re.match(r'^[\W_]+$', textlist[i]): | |
textlist[i-1] += textlist[i] | |
del textlist[i] | |
del langlist[i] | |
# Merge consecutive words with the same language tag | |
i = 0 | |
while i < len(langlist) - 1: | |
if langlist[i] == langlist[i+1]: | |
textlist[i] += textlist[i+1] | |
del textlist[i+1] | |
del langlist[i+1] | |
else: | |
i += 1 | |
return textlist, langlist | |
def clean_text_inf(text, language): | |
formattext = "" | |
language = language.replace("all_","") | |
for tmp in LangSegment.getTexts(text): | |
if language == "ja": | |
if tmp["lang"] == language or tmp["lang"] == "zh": | |
formattext += tmp["text"] + " " | |
continue | |
if tmp["lang"] == language: | |
formattext += tmp["text"] + " " | |
while " " in formattext: | |
formattext = formattext.replace(" ", " ") | |
phones, word2ph, norm_text = clean_text(formattext, language) | |
phones = cleaned_text_to_sequence(phones) | |
return phones, word2ph, norm_text | |
dtype=torch.float16 if is_half == True else torch.float32 | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
language=language.replace("all_","") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
def nonen_clean_text_inf(text, language): | |
if(language!="auto"): | |
textlist, langlist = splite_en_inf(text, language) | |
else: | |
textlist=[] | |
langlist=[] | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
phones_list = [] | |
word2ph_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
phones_list.append(phones) | |
if lang == "zh": | |
word2ph_list.append(word2ph) | |
norm_text_list.append(norm_text) | |
print(word2ph_list) | |
phones = sum(phones_list, []) | |
word2ph = sum(word2ph_list, []) | |
norm_text = ' '.join(norm_text_list) | |
return phones, word2ph, norm_text | |
def nonen_get_bert_inf(text, language): | |
if(language!="auto"): | |
textlist, langlist = splite_en_inf(text, language) | |
else: | |
textlist=[] | |
langlist=[] | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
bert_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
return bert | |
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } | |
def get_first(text): | |
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
text = re.split(pattern, text)[0].strip() | |
return text | |
def get_cleaned_text_final(text,language): | |
if language in {"en","all_zh","all_ja"}: | |
phones, word2ph, norm_text = clean_text_inf(text, language) | |
elif language in {"zh", "ja","auto"}: | |
phones, word2ph, norm_text = nonen_clean_text_inf(text, language) | |
return phones, word2ph, norm_text | |
def get_bert_final(phones, word2ph, text,language,device): | |
if language == "en": | |
bert = get_bert_inf(phones, word2ph, text, language) | |
elif language in {"zh", "ja","auto"}: | |
bert = nonen_get_bert_inf(text, language) | |
elif language == "all_zh": | |
bert = get_bert_feature(text, word2ph).to(device) | |
else: | |
bert = torch.zeros((1024, len(phones))).to(device) | |
return bert | |
def merge_short_text_in_array(texts, threshold): | |
if (len(texts)) < 2: | |
return texts | |
result = [] | |
text = "" | |
for ele in texts: | |
text += ele | |
if len(text) >= threshold: | |
result.append(text) | |
text = "" | |
if (len(text) > 0): | |
if len(result) == 0: | |
result.append(text) | |
else: | |
result[len(result) - 1] += text | |
return result | |
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=("Do not split"), volume_scale=1.0): | |
if not duration(ref_wav_path): | |
return None | |
if text == '': | |
wprint("Please enter text to generate") | |
return None | |
t0 = ttime() | |
startTime=timer() | |
text=trim_text(text,text_language) | |
change_sovits_weights(sovits_path) | |
tprint(f'🏕️LOADED SoVITS Model: {sovits_path}') | |
change_gpt_weights(gpt_path) | |
tprint(f'🏕️LOADED GPT Model: {gpt_path}') | |
prompt_language = dict_language[prompt_language] | |
try: | |
text_language = dict_language[text_language] | |
except KeyError as e: | |
wprint(f"Unsupported language type: {e}") | |
return None | |
prompt_text = prompt_text.strip("\n") | |
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." | |
text = text.strip("\n") | |
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | |
errinfo='参考音频在3~10秒范围外,请更换!' | |
raise OSError((errinfo)) | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
zero_wav_torch = zero_wav_torch.to(device) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language) | |
if (how_to_cut == ("Split into groups of 4 sentences")): | |
text = cut1(text) | |
elif (how_to_cut == ("Split every 50 characters")): | |
text = cut2(text) | |
elif (how_to_cut == ("Split at CN/JP periods (。)")): | |
text = cut3(text) | |
elif (how_to_cut == ("Split at English periods (.)")): | |
text = cut4(text) | |
elif (how_to_cut == ("Split at punctuation marks")): | |
text = cut5(text) | |
while "\n\n" in text: | |
text = text.replace("\n\n", "\n") | |
print(text) | |
texts = text.split("\n") | |
texts = merge_short_text_in_array(texts, 5) | |
audio_opt = [] | |
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype) | |
for text in texts: | |
if (len(text.strip()) == 0): | |
continue | |
if (text[-1] not in splits): text += "。" if text_language != "en" else "." | |
print(text) | |
phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language) | |
try: | |
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype) | |
except RuntimeError as e: | |
wprint(f"The input text does not match the language: {e}") | |
return None | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config["inference"]["top_k"], | |
early_stop_num=hz * max_sec, | |
) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze( | |
0 | |
) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path) # .to(device) | |
if is_half == True: | |
refer = refer.half().to(device) | |
else: | |
refer = refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
try: | |
audio = ( | |
vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer | |
) | |
.detach() | |
.cpu() | |
.numpy()[0, 0] | |
) | |
except RuntimeError as e: | |
wprint(f"The input text does not match the language: {e}") | |
return None | |
max_audio=np.abs(audio).max() | |
if max_audio>1:audio/=max_audio | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
#yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) | |
audio_data = (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) | |
audio_data = (audio_data.astype(np.float32) * volume_scale).astype(np.int16) | |
output_wav = "output_audio.wav" | |
sf.write(output_wav, audio_data, hps.data.sampling_rate) | |
endTime=timer() | |
tprint(f'🆗TTS COMPLETE,{round(endTime-startTime,4)}s') | |
return output_wav | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in splits: | |
todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break | |
if todo_text[i_split_head] in splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
split_idx = list(range(0, len(inps), 4)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
if len(inps) < 2: | |
return inp | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
# print(opts) | |
if len(opts) > 1 and len(opts[-1]) < 50: | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s" % item for item in inp.strip("。").split("。")]) | |
def cut4(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s" % item for item in inp.strip(".").split(".")]) | |
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
def cut5(inp): | |
# if not re.search(r'[^\w\s]', inp[-1]): | |
# inp += '。' | |
inp = inp.strip("\n") | |
punds = r'[,.;?!、,。?!;:…]' | |
items = re.split(f'({punds})', inp) | |
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])] | |
if len(items)%2 == 1: | |
mergeitems.append(items[-1]) | |
opt = "\n".join(mergeitems) | |
return opt | |
def custom_sort_key(s): | |
parts = re.split('(\d+)', s) | |
parts = [int(part) if part.isdigit() else part for part in parts] | |
return parts | |
#==========custom functions============ | |
def tprint(text): | |
now=datetime.now(tz).strftime('%H:%M:%S') | |
print(f'UTC+8 - {now} - {text}') | |
def wprint(text): | |
tprint(text) | |
gr.Warning(text) | |
def lang_detector(text): | |
min_chars = 5 | |
if len(text) < min_chars: | |
return "Input text too short" | |
try: | |
detector = Detector(text).language | |
lang_info = str(detector) | |
code = re.search(r"name: (\w+)", lang_info).group(1) | |
if code == 'Japanese': | |
return "日本語" | |
elif code == 'Chinese': | |
return "中文" | |
elif code == 'English': | |
return 'English' | |
else: | |
return code | |
except Exception as e: | |
return f"ERROR:{str(e)}" | |
def trim_text(text,language): | |
limit_cj = 120 #character | |
limit_en = 60 #words | |
search_limit_cj = limit_cj+30 | |
search_limit_en = limit_en +30 | |
text = text.replace('\n', '').strip() | |
if language =='English': | |
words = text.split() | |
if len(words) <= limit_en: | |
return text | |
# English | |
for i in range(limit_en, -1, -1): | |
if any(punct in words[i] for punct in splits): | |
return ' '.join(words[:i+1]) | |
for i in range(limit_en, min(len(words), search_limit_en)): | |
if any(punct in words[i] for punct in splits): | |
return ' '.join(words[:i+1]) | |
return ' '.join(words[:limit_en]) | |
else:#中文日文 | |
if len(text) <= limit_cj: | |
return text | |
for i in range(limit_cj, -1, -1): | |
if text[i] in splits: | |
return text[:i+1] | |
for i in range(limit_cj, min(len(text), search_limit_cj)): | |
if text[i] in splits: | |
return text[:i+1] | |
return text[:limit_cj] | |
def duration(audio_file_path): | |
if not audio_file_path: | |
wprint("Failed to obtain uploaded audio") | |
return False | |
try: | |
audio_duration = librosa.get_duration(filename=audio_file_path) | |
if not 3 < audio_duration < 10: | |
wprint("The audio length must be between 3~10 seconds") | |
return False | |
return True | |
except FileNotFoundError: | |
return False | |
def update_model(choice): | |
global gpt_path, sovits_path | |
model_info = models[choice] | |
gpt_path = abs_path(model_info["gpt_weight"]) | |
sovits_path = abs_path(model_info["sovits_weight"]) | |
model_name = choice | |
tone_info = model_info["tones"]["tone1"] | |
tone_sample_path = abs_path(tone_info["sample"]) | |
tprint(f'✅SELECT MODEL:{choice}') | |
# 返回默认tone“tone1” | |
return ( | |
tone_info["example_voice_wav"], | |
tone_info["example_voice_wav_words"], | |
model_info["default_language"], | |
model_info["default_language"], | |
model_name, | |
"tone1" , | |
tone_sample_path | |
) | |
def update_tone(model_choice, tone_choice): | |
model_info = models[model_choice] | |
tone_info = model_info["tones"][tone_choice] | |
example_voice_wav = abs_path(tone_info["example_voice_wav"]) | |
example_voice_wav_words = tone_info["example_voice_wav_words"] | |
tone_sample_path = abs_path(tone_info["sample"]) | |
return example_voice_wav, example_voice_wav_words,tone_sample_path | |
def transcribe(voice): | |
time1=timer() | |
tprint('⚡Start Clone - transcribe') | |
task="transcribe" | |
if voice is None: | |
wprint("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
R = pipe(voice, batch_size=8, generate_kwargs={"task": task}, return_timestamps=True,return_language=True) | |
text=R['text'] | |
lang=R['chunks'][0]['language'] | |
if lang=='english': | |
language='English' | |
elif lang =='chinese': | |
language='中文' | |
elif lang=='japanese': | |
language = '日本語' | |
time2=timer() | |
tprint(f'transcribe COMPLETE,{round(time2-time1,4)}s') | |
tprint(f'\nTRANSCRIBE RESULT:\n 🔣Language:{language} \n 🔣Text:{text}' ) | |
return text,language | |
def clone_voice(user_voice,user_text,user_lang): | |
if not duration(user_voice): | |
return None | |
if user_text == '': | |
wprint("Please enter text to generate") | |
return None | |
user_text=trim_text(user_text,user_lang) | |
time1=timer() | |
global gpt_path, sovits_path | |
gpt_path = abs_path("pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") | |
#tprint(f'Model loaded:{gpt_path}') | |
sovits_path = abs_path("pretrained_models/s2G488k.pth") | |
#tprint(f'Model loaded:{sovits_path}') | |
try: | |
prompt_text, prompt_language = transcribe(user_voice) | |
except UnboundLocalError as e: | |
wprint(f"The language in the audio cannot be recognized :{str(e)}") | |
return None | |
output_wav = get_tts_wav( | |
user_voice, | |
prompt_text, | |
prompt_language, | |
user_text, | |
user_lang, | |
how_to_cut="Do not split", | |
volume_scale=1.0) | |
time2=timer() | |
tprint(f'🆗CLONE COMPLETE,{round(time2-time1,4)}s') | |
return output_wav | |
with open('dummy') as f: | |
dummy_txt = f.read().strip().splitlines() | |
def dice(): | |
return random.choice(dummy_txt), '🎲' | |
from info import models | |
models_by_language = { | |
"English": [], | |
"中文": [], | |
"日本語": [] | |
} | |
for model_name, model_info in models.items(): | |
language = model_info["default_language"] | |
models_by_language[language].append((model_name, model_info)) | |
##########GRADIO########### | |
with gr.Blocks(theme='Kasien/ali_theme_custom') as app: | |
gr.HTML(''' | |
<h1 style="font-size: 25px;">Text-to-Speech Generator</h1> | |
<h1 style="font-size: 20px;">Supports English</h1> | |
<p style="margin-bottom: 10px; font-size: 100%"> | |
Welcome to our Text-to-Speech generator! This tool converts written text into natural sounding audio in English. Perfect for presentations, educational content, or just having fun, it allows you to bring text to life effortlessly. Utilize the various voice options and tones to tailor your audio outputs according to your needs. | |
</p> | |
</p>''') | |
default_voice_wav, default_voice_wav_words, default_language, _, default_model_name, _, default_tone_sample_path = update_model("Trump") | |
english_models = [name for name, _ in models_by_language["English"]] | |
with gr.Row(): | |
english_choice = gr.Radio(english_models, label="EN",value="Trump",scale=3) | |
plsh=''' | |
Input any text | |
''' | |
limit='Max 70 words. Excess will be ignored.' | |
gr.HTML(''' | |
<b>Input Text</b>''') | |
with gr.Row(): | |
with gr.Column(scale=2): | |
model_name = gr.Textbox(label="Seleted Model", value=default_model_name, interactive=False,scale=1,) | |
text_language = gr.Textbox( | |
label="Language for input text", | |
info='Automatic detection of input language type.',scale=1,interactive=False | |
) | |
text = gr.Textbox(label="INPUT TEXT", lines=5,placeholder=plsh,info=limit,scale=10,min_width=0) | |
ddice= gr.Button('🎲', variant='tool',min_width=0,scale=0) | |
ddice.click(dice, outputs=[text, ddice]) | |
text.change( lang_detector, text, text_language) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
tone_select = gr.Radio( | |
label="Select Tone", | |
choices=["tone1","tone2","tone3"], | |
value="tone1", | |
info='Tone influences the emotional expression ',scale=1) | |
tone_sample=gr.Audio(label="🔊Preview tone ", scale=8) | |
with gr.Accordion(label="prpt voice", open=False,visible=False): | |
with gr.Row(visible=True): | |
inp_ref = gr.Audio(label="Reference audio", type="filepath", value=default_voice_wav, scale=3) | |
prompt_text = gr.Textbox(label="Reference text", value=default_voice_wav_words, scale=3) | |
prompt_language = gr.Dropdown(label="Language of the reference audio", choices=["English"], value=default_language, scale=1,interactive=False) | |
dummy = gr.Radio(choices=["English"],visible=False) | |
with gr.Accordion(label="Additional generation options", open=False): | |
how_to_cut = gr.Dropdown( | |
label=("How to split?"), | |
choices=[("Do not split"), ("Split into groups of 4 sentences"), ("Split every 50 characters"), | |
("Split at CN/JP periods (。)"), ("Split at English periods (.)"), ("Split at punctuation marks"), ], | |
value=("Split into groups of 4 sentences"), | |
interactive=True, | |
info='A suitable splitting method can achieve better generation results' | |
) | |
volume = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.01, label='Volume') | |
gr.HTML(''' | |
<b>Generate Voice</b>''') | |
with gr.Row(): | |
main_button = gr.Button("✨Generate Voice", variant="primary", scale=2) | |
output = gr.Audio(label="💾Download it by clicking ⬇️", scale=6) | |
#info = gr.Textbox(label="INFO", visible=True, readonly=True, scale=1) | |
gr.HTML(''' | |
Generation is slower, please be patient and wait<br> | |
If it generated silence, please try again. | |
<br><br><br><br> | |
<h1 style="font-size: 25px;">Clone custom Voice</h1> | |
<p style="margin-bottom: 10px; font-size: 100%"> | |
<br> | |
Requires 3-10 seconds of voice input. The cloned voice will have a similarity of 80% or above compared to the original.<br> | |
</p>''') | |
with gr.Row(): | |
user_voice = gr.Audio(type="filepath", label="(3~10s)Upload or Record audio",scale=3) | |
with gr.Column(scale=7): | |
user_lang = gr.Textbox(label="Language",info='Automatic detection of input language type.',interactive=False) | |
with gr.Row(): | |
user_text= gr.Textbox(label="Text for generation", lines=5,placeholder=plsh,info=limit) | |
dddice= gr.Button('🎲', variant='tool',min_width=0,scale=0) | |
dddice.click(dice, outputs=[user_text, dddice]) | |
user_text.change( lang_detector, user_text, user_lang) | |
user_button = gr.Button("✨Clone Voice", variant="primary") | |
user_output = gr.Audio(label="💾Download it by clicking ⬇️") | |
gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP9" /></div>''') | |
english_choice.change(update_model, inputs=[english_choice], outputs=[inp_ref, prompt_text, prompt_language,dummy,model_name, tone_select, tone_sample]) | |
tone_select.change(update_tone, inputs=[model_name, tone_select], outputs=[inp_ref, prompt_text, tone_sample]) | |
main_button.click( | |
get_tts_wav, | |
inputs=[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut,volume], | |
outputs=[output]) | |
user_button.click( | |
clone_voice, | |
inputs=[user_voice,user_text,user_lang], | |
outputs=[user_output]) | |
app.launch(share=True, show_api=False).queue(api_open=False) |