File size: 7,812 Bytes
d5ed1ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
"""
Guess word pronunciations using a Phonetisaurus FST
See bin/fst2npz.py to convert an FST to a numpy graph.
Reference:
https://github.com/rhasspy/gruut/blob/master/gruut/g2p_phonetisaurus.py
"""
import typing
from collections import defaultdict
from pathlib import Path
import numpy as np
NUMPY_GRAPH = typing.Dict[str, np.ndarray]
_NOT_FINAL = object()
class PhonetisaurusGraph:
"""Graph of numpy arrays that represents a Phonetisaurus FST
Also contains shared cache of edges and final state probabilities.
These caches are necessary to ensure that the .npz file stays small and fast
to load.
"""
def __init__(self, graph: NUMPY_GRAPH, preload: bool = False):
self.graph = graph
self.start_node = int(self.graph["start_node"].item())
# edge_index -> (from_node, to_node, ilabel, olabel)
self.edges = self.graph["edges"]
self.edge_probs = self.graph["edge_probs"]
# int -> [str]
self.symbols = []
for symbol_str in self.graph["symbols"]:
symbol_list = symbol_str.replace("_", "").split("|")
self.symbols.append((len(symbol_list), symbol_list))
# nodes that are accepting states
self.final_nodes = self.graph["final_nodes"]
# node -> probability
self.final_probs = self.graph["final_probs"]
# Cache
self.preloaded = preload
self.out_edges: typing.Dict[int, typing.List[int]] = defaultdict(list)
self.final_node_probs: typing.Dict[int, typing.Any] = {}
if preload:
# Load out edges
for edge_idx, (from_node, *_) in enumerate(self.edges):
self.out_edges[from_node].append(edge_idx)
# Load final probabilities
self.final_node_probs.update(zip(self.final_nodes, self.final_probs))
@staticmethod
def load(graph_path: typing.Union[str, Path], **kwargs) -> "PhonetisaurusGraph":
"""Load .npz file with numpy graph"""
np_graph = np.load(graph_path, allow_pickle=True)
return PhonetisaurusGraph(np_graph, **kwargs)
def g2p_one(
self,
word: typing.Union[str, typing.Sequence[str]],
eps: str = "<eps>",
beam: int = 5000,
min_beam: int = 100,
beam_scale: float = 0.6,
grapheme_separator: str = "",
max_guesses: int = 1,
) -> typing.Iterable[typing.Tuple[typing.Sequence[str], typing.Sequence[str]]]:
"""Guess phonemes for word"""
current_beam = beam
graphemes: typing.Sequence[str] = []
if isinstance(word, str):
word = word.strip()
if grapheme_separator:
graphemes = word.split(grapheme_separator)
else:
graphemes = list(word)
else:
graphemes = word
if not graphemes:
return []
# (prob, node, graphemes, phonemes, final, beam)
q: typing.List[
typing.Tuple[
float,
typing.Optional[int],
typing.Sequence[str],
typing.List[str],
bool,
]
] = [(0.0, self.start_node, graphemes, [], False)]
q_next: typing.List[
typing.Tuple[
float,
typing.Optional[int],
typing.Sequence[str],
typing.List[str],
bool,
]
] = []
# (prob, phonemes)
best_heap: typing.List[typing.Tuple[float, typing.Sequence[str]]] = []
# Avoid duplicate guesses
guessed_phonemes: typing.Set[typing.Tuple[str, ...]] = set()
while q:
done_with_word = False
q_next = []
for prob, node, next_graphemes, output, is_final in q:
if is_final:
# Complete guess
phonemes = tuple(output)
if phonemes not in guessed_phonemes:
best_heap.append((prob, phonemes))
guessed_phonemes.add(phonemes)
if len(best_heap) >= max_guesses:
done_with_word = True
break
continue
assert node is not None
if not next_graphemes:
if self.preloaded:
final_prob = self.final_node_probs.get(node, _NOT_FINAL)
else:
final_prob = self.final_node_probs.get(node)
if final_prob is None:
final_idx = int(np.searchsorted(self.final_nodes, node))
if self.final_nodes[final_idx] == node:
# Cache
final_prob = float(self.final_probs[final_idx])
self.final_node_probs[node] = final_prob
else:
# Not a final state
final_prob = _NOT_FINAL
self.final_node_probs[node] = final_prob
if final_prob != _NOT_FINAL:
final_prob = typing.cast(float, final_prob)
q_next.append((prob + final_prob, None, [], output, True))
len_next_graphemes = len(next_graphemes)
if self.preloaded:
# Was pre-loaded in __init__
edge_idxs = self.out_edges[node]
else:
# Build cache during search
maybe_edge_idxs = self.out_edges.get(node)
if maybe_edge_idxs is None:
edge_idx = int(np.searchsorted(self.edges[:, 0], node))
edge_idxs = []
while self.edges[edge_idx][0] == node:
edge_idxs.append(edge_idx)
edge_idx += 1
# Cache
self.out_edges[node] = edge_idxs
else:
edge_idxs = maybe_edge_idxs
for edge_idx in edge_idxs:
_, to_node, ilabel_idx, olabel_idx = self.edges[edge_idx]
out_prob = self.edge_probs[edge_idx]
len_igraphemes, igraphemes = self.symbols[ilabel_idx]
if len_igraphemes > len_next_graphemes:
continue
if igraphemes == [eps]:
item = (prob + out_prob, to_node, next_graphemes, output, False)
q_next.append(item)
else:
sub_graphemes = next_graphemes[:len_igraphemes]
if igraphemes == sub_graphemes:
_, olabel = self.symbols[olabel_idx]
item = (
prob + out_prob,
to_node,
next_graphemes[len(sub_graphemes) :],
output + olabel,
False,
)
q_next.append(item)
if done_with_word:
break
q_next = sorted(q_next, key=lambda item: item[0])[:current_beam]
q = q_next
current_beam = max(min_beam, (int(current_beam * beam_scale)))
# Yield guesses
if best_heap:
for _, guess_phonemes in sorted(best_heap, key=lambda item: item[0])[
:max_guesses
]:
yield [p for p in guess_phonemes if p]
else:
# No guesses
yield [] |