File size: 7,812 Bytes
d5ed1ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
Guess word pronunciations using a Phonetisaurus FST

See bin/fst2npz.py to convert an FST to a numpy graph.

Reference: 
  https://github.com/rhasspy/gruut/blob/master/gruut/g2p_phonetisaurus.py
"""
import typing
from collections import defaultdict
from pathlib import Path
import numpy as np

NUMPY_GRAPH = typing.Dict[str, np.ndarray]
_NOT_FINAL = object()

class PhonetisaurusGraph:
    """Graph of numpy arrays that represents a Phonetisaurus FST

    Also contains shared cache of edges and final state probabilities.
    These caches are necessary to ensure that the .npz file stays small and fast
    to load.
    """

    def __init__(self, graph: NUMPY_GRAPH, preload: bool = False):
        self.graph = graph

        self.start_node = int(self.graph["start_node"].item())

        # edge_index -> (from_node, to_node, ilabel, olabel)
        self.edges = self.graph["edges"]
        self.edge_probs = self.graph["edge_probs"]

        # int -> [str]
        self.symbols = []
        for symbol_str in self.graph["symbols"]:
            symbol_list = symbol_str.replace("_", "").split("|")
            self.symbols.append((len(symbol_list), symbol_list))

        # nodes that are accepting states
        self.final_nodes = self.graph["final_nodes"]

        # node -> probability
        self.final_probs = self.graph["final_probs"]

        # Cache
        self.preloaded = preload
        self.out_edges: typing.Dict[int, typing.List[int]] = defaultdict(list)
        self.final_node_probs: typing.Dict[int, typing.Any] = {}

        if preload:
            # Load out edges
            for edge_idx, (from_node, *_) in enumerate(self.edges):
                self.out_edges[from_node].append(edge_idx)

            # Load final probabilities
            self.final_node_probs.update(zip(self.final_nodes, self.final_probs))

    @staticmethod
    def load(graph_path: typing.Union[str, Path], **kwargs) -> "PhonetisaurusGraph":
        """Load .npz file with numpy graph"""
        np_graph = np.load(graph_path, allow_pickle=True)
        return PhonetisaurusGraph(np_graph, **kwargs)

    def g2p_one(
        self,
        word: typing.Union[str, typing.Sequence[str]],
        eps: str = "<eps>",
        beam: int = 5000,
        min_beam: int = 100,
        beam_scale: float = 0.6,
        grapheme_separator: str = "",
        max_guesses: int = 1,
    ) -> typing.Iterable[typing.Tuple[typing.Sequence[str], typing.Sequence[str]]]:
        """Guess phonemes for word"""
        current_beam = beam
        graphemes: typing.Sequence[str] = []

        if isinstance(word, str):
            word = word.strip()

            if grapheme_separator:
                graphemes = word.split(grapheme_separator)
            else:
                graphemes = list(word)
        else:
            graphemes = word

        if not graphemes:
            return []

        # (prob, node, graphemes, phonemes, final, beam)
        q: typing.List[
            typing.Tuple[
                float,
                typing.Optional[int],
                typing.Sequence[str],
                typing.List[str],
                bool,
            ]
        ] = [(0.0, self.start_node, graphemes, [], False)]

        q_next: typing.List[
            typing.Tuple[
                float,
                typing.Optional[int],
                typing.Sequence[str],
                typing.List[str],
                bool,
            ]
        ] = []

        # (prob, phonemes)
        best_heap: typing.List[typing.Tuple[float, typing.Sequence[str]]] = []

        # Avoid duplicate guesses
        guessed_phonemes: typing.Set[typing.Tuple[str, ...]] = set()

        while q:
            done_with_word = False
            q_next = []

            for prob, node, next_graphemes, output, is_final in q:
                if is_final:
                    # Complete guess
                    phonemes = tuple(output)
                    if phonemes not in guessed_phonemes:
                        best_heap.append((prob, phonemes))
                        guessed_phonemes.add(phonemes)

                    if len(best_heap) >= max_guesses:
                        done_with_word = True
                        break

                    continue

                assert node is not None

                if not next_graphemes:
                    if self.preloaded:
                        final_prob = self.final_node_probs.get(node, _NOT_FINAL)
                    else:
                        final_prob = self.final_node_probs.get(node)
                        if final_prob is None:
                            final_idx = int(np.searchsorted(self.final_nodes, node))
                            if self.final_nodes[final_idx] == node:
                                # Cache
                                final_prob = float(self.final_probs[final_idx])
                                self.final_node_probs[node] = final_prob
                            else:
                                # Not a final state
                                final_prob = _NOT_FINAL
                                self.final_node_probs[node] = final_prob

                    if final_prob != _NOT_FINAL:
                        final_prob = typing.cast(float, final_prob)
                        q_next.append((prob + final_prob, None, [], output, True))

                len_next_graphemes = len(next_graphemes)
                if self.preloaded:
                    # Was pre-loaded in __init__
                    edge_idxs = self.out_edges[node]
                else:
                    # Build cache during search
                    maybe_edge_idxs = self.out_edges.get(node)
                    if maybe_edge_idxs is None:
                        edge_idx = int(np.searchsorted(self.edges[:, 0], node))
                        edge_idxs = []
                        while self.edges[edge_idx][0] == node:
                            edge_idxs.append(edge_idx)
                            edge_idx += 1

                        # Cache
                        self.out_edges[node] = edge_idxs
                    else:
                        edge_idxs = maybe_edge_idxs

                for edge_idx in edge_idxs:
                    _, to_node, ilabel_idx, olabel_idx = self.edges[edge_idx]
                    out_prob = self.edge_probs[edge_idx]

                    len_igraphemes, igraphemes = self.symbols[ilabel_idx]

                    if len_igraphemes > len_next_graphemes:
                        continue

                    if igraphemes == [eps]:
                        item = (prob + out_prob, to_node, next_graphemes, output, False)
                        q_next.append(item)
                    else:
                        sub_graphemes = next_graphemes[:len_igraphemes]
                        if igraphemes == sub_graphemes:
                            _, olabel = self.symbols[olabel_idx]
                            item = (
                                prob + out_prob,
                                to_node,
                                next_graphemes[len(sub_graphemes) :],
                                output + olabel,
                                False,
                            )
                            q_next.append(item)

            if done_with_word:
                break

            q_next = sorted(q_next, key=lambda item: item[0])[:current_beam]
            q = q_next

            current_beam = max(min_beam, (int(current_beam * beam_scale)))

        # Yield guesses
        if best_heap:
            for _, guess_phonemes in sorted(best_heap, key=lambda item: item[0])[
                :max_guesses
            ]:
                yield [p for p in guess_phonemes if p]
        else:
            # No guesses
            yield []