|
import os |
|
import glob |
|
import sys |
|
import argparse |
|
import logging |
|
import json |
|
import subprocess |
|
import numpy as np |
|
from scipy.io.wavfile import read |
|
import torch |
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) |
|
logger = logging |
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
iteration = checkpoint_dict['iteration'] |
|
learning_rate = checkpoint_dict['learning_rate'] |
|
if optimizer is not None: |
|
optimizer.load_state_dict(checkpoint_dict['optimizer']) |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict= {} |
|
for k, v in state_dict.items(): |
|
try: |
|
new_state_dict[k] = saved_state_dict[k] |
|
except: |
|
logger.info("%s is not in the checkpoint" % k) |
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict) |
|
else: |
|
model.load_state_dict(new_state_dict) |
|
logger.info("Loaded checkpoint '{}' (iteration {})" .format( |
|
checkpoint_path, iteration)) |
|
return model, optimizer, learning_rate, iteration |
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): |
|
logger.info("Saving model and optimizer state at iteration {} to {}".format( |
|
iteration, checkpoint_path)) |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
torch.save({'model': state_dict, |
|
'iteration': iteration, |
|
'optimizer': optimizer.state_dict(), |
|
'learning_rate': learning_rate}, checkpoint_path) |
|
|
|
|
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): |
|
for k, v in scalars.items(): |
|
writer.add_scalar(k, v, global_step) |
|
for k, v in histograms.items(): |
|
writer.add_histogram(k, v, global_step) |
|
for k, v in images.items(): |
|
writer.add_image(k, v, global_step, dataformats='HWC') |
|
for k, v in audios.items(): |
|
writer.add_audio(k, v, global_step, audio_sampling_rate) |
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"): |
|
f_list = glob.glob(os.path.join(dir_path, regex)) |
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) |
|
x = f_list[-1] |
|
print(x) |
|
return x |
|
|
|
def load_wav_to_torch(full_path): |
|
sampling_rate, data = read(full_path) |
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate |
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"): |
|
with open(filename, encoding='utf-8') as f: |
|
filepaths_and_text = [line.strip().split(split) for line in f] |
|
return filepaths_and_text |
|
|
|
|
|
def get_hparams(init=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', '--config', type=str, default="./configs/base.json", |
|
help='JSON file for configuration') |
|
parser.add_argument('-m', '--model', type=str, required=True, |
|
help='Model name') |
|
|
|
args = parser.parse_args() |
|
model_dir = os.path.join("./logs", args.model) |
|
|
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
if init: |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
with open(config_save_path, "w") as f: |
|
f.write(data) |
|
else: |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_dir(model_dir): |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams =HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_file(config_path): |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams =HParams(**config) |
|
return hparams |
|
|
|
|
|
def check_git_hash(model_dir): |
|
source_dir = os.path.dirname(os.path.realpath(__file__)) |
|
if not os.path.exists(os.path.join(source_dir, ".git")): |
|
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( |
|
source_dir |
|
)) |
|
return |
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD") |
|
|
|
path = os.path.join(model_dir, "githash") |
|
if os.path.exists(path): |
|
saved_hash = open(path).read() |
|
if saved_hash != cur_hash: |
|
logger.warn("git hash values are different. {}(saved) != {}(current)".format( |
|
saved_hash[:8], cur_hash[:8])) |
|
else: |
|
open(path, "w").write(cur_hash) |
|
|
|
|
|
def get_logger(model_dir, filename="train.log"): |
|
global logger |
|
logger = logging.getLogger(os.path.basename(model_dir)) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") |
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
h = logging.FileHandler(os.path.join(model_dir, filename)) |
|
h.setLevel(logging.DEBUG) |
|
h.setFormatter(formatter) |
|
logger.addHandler(h) |
|
return logger |
|
|
|
|
|
class HParams(): |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|