remove unused code
Browse files- README.md +11 -0
- app.py +0 -1
- attentions.py +0 -3
- commons.py +0 -3
- data_utils.py +0 -392
- losses.py +0 -4
- mel_processing.py +0 -12
- modules.py +0 -1
- preprocess.py +0 -25
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: KLEA
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.46.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
import gradio as gr
|
3 |
from models import SynthesizerTrn
|
4 |
-
from scipy.io.wavfile import write
|
5 |
from khmer_phonemizer import phonemize_single
|
6 |
import utils
|
7 |
import commons
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
import gradio as gr
|
3 |
from models import SynthesizerTrn
|
|
|
4 |
from khmer_phonemizer import phonemize_single
|
5 |
import utils
|
6 |
import commons
|
attentions.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
-
import copy
|
2 |
import math
|
3 |
-
import numpy as np
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
from torch.nn import functional as F
|
7 |
-
|
8 |
import commons
|
9 |
import modules
|
10 |
from modules import LayerNorm
|
|
|
|
|
1 |
import math
|
|
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
from torch.nn import functional as F
|
|
|
5 |
import commons
|
6 |
import modules
|
7 |
from modules import LayerNorm
|
commons.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import math
|
2 |
-
import numpy as np
|
3 |
import torch
|
4 |
-
from torch import nn
|
5 |
from torch.nn import functional as F
|
6 |
|
7 |
-
|
8 |
def init_weights(m, mean=0.0, std=0.01):
|
9 |
classname = m.__class__.__name__
|
10 |
if classname.find("Conv") != -1:
|
|
|
1 |
import math
|
|
|
2 |
import torch
|
|
|
3 |
from torch.nn import functional as F
|
4 |
|
|
|
5 |
def init_weights(m, mean=0.0, std=0.01):
|
6 |
classname = m.__class__.__name__
|
7 |
if classname.find("Conv") != -1:
|
data_utils.py
DELETED
@@ -1,392 +0,0 @@
|
|
1 |
-
import time
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torch.utils.data
|
7 |
-
|
8 |
-
import commons
|
9 |
-
from mel_processing import spectrogram_torch
|
10 |
-
from utils import load_wav_to_torch, load_filepaths_and_text
|
11 |
-
from text import text_to_sequence, cleaned_text_to_sequence
|
12 |
-
|
13 |
-
|
14 |
-
class TextAudioLoader(torch.utils.data.Dataset):
|
15 |
-
"""
|
16 |
-
1) loads audio, text pairs
|
17 |
-
2) normalizes text and converts them to sequences of integers
|
18 |
-
3) computes spectrograms from audio files.
|
19 |
-
"""
|
20 |
-
def __init__(self, audiopaths_and_text, hparams):
|
21 |
-
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
22 |
-
self.text_cleaners = hparams.text_cleaners
|
23 |
-
self.max_wav_value = hparams.max_wav_value
|
24 |
-
self.sampling_rate = hparams.sampling_rate
|
25 |
-
self.filter_length = hparams.filter_length
|
26 |
-
self.hop_length = hparams.hop_length
|
27 |
-
self.win_length = hparams.win_length
|
28 |
-
self.sampling_rate = hparams.sampling_rate
|
29 |
-
|
30 |
-
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
31 |
-
|
32 |
-
self.add_blank = hparams.add_blank
|
33 |
-
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
34 |
-
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
35 |
-
|
36 |
-
random.seed(1234)
|
37 |
-
random.shuffle(self.audiopaths_and_text)
|
38 |
-
self._filter()
|
39 |
-
|
40 |
-
|
41 |
-
def _filter(self):
|
42 |
-
"""
|
43 |
-
Filter text & store spec lengths
|
44 |
-
"""
|
45 |
-
# Store spectrogram lengths for Bucketing
|
46 |
-
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
47 |
-
# spec_length = wav_length // hop_length
|
48 |
-
|
49 |
-
audiopaths_and_text_new = []
|
50 |
-
lengths = []
|
51 |
-
for audiopath, text in self.audiopaths_and_text:
|
52 |
-
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
53 |
-
audiopaths_and_text_new.append([audiopath, text])
|
54 |
-
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
55 |
-
self.audiopaths_and_text = audiopaths_and_text_new
|
56 |
-
self.lengths = lengths
|
57 |
-
|
58 |
-
def get_audio_text_pair(self, audiopath_and_text):
|
59 |
-
# separate filename and text
|
60 |
-
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
61 |
-
text = self.get_text(text)
|
62 |
-
spec, wav = self.get_audio(audiopath)
|
63 |
-
return (text, spec, wav)
|
64 |
-
|
65 |
-
def get_audio(self, filename):
|
66 |
-
audio, sampling_rate = load_wav_to_torch(filename)
|
67 |
-
if sampling_rate != self.sampling_rate:
|
68 |
-
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
69 |
-
sampling_rate, self.sampling_rate))
|
70 |
-
audio_norm = audio / self.max_wav_value
|
71 |
-
audio_norm = audio_norm.unsqueeze(0)
|
72 |
-
spec_filename = filename.replace(".wav", ".spec.pt")
|
73 |
-
if os.path.exists(spec_filename):
|
74 |
-
spec = torch.load(spec_filename)
|
75 |
-
else:
|
76 |
-
spec = spectrogram_torch(audio_norm, self.filter_length,
|
77 |
-
self.sampling_rate, self.hop_length, self.win_length,
|
78 |
-
center=False)
|
79 |
-
spec = torch.squeeze(spec, 0)
|
80 |
-
torch.save(spec, spec_filename)
|
81 |
-
return spec, audio_norm
|
82 |
-
|
83 |
-
def get_text(self, text):
|
84 |
-
if self.cleaned_text:
|
85 |
-
text_norm = cleaned_text_to_sequence(text)
|
86 |
-
else:
|
87 |
-
text_norm = text_to_sequence(text, self.text_cleaners)
|
88 |
-
if self.add_blank:
|
89 |
-
text_norm = commons.intersperse(text_norm, 0)
|
90 |
-
text_norm = torch.LongTensor(text_norm)
|
91 |
-
return text_norm
|
92 |
-
|
93 |
-
def __getitem__(self, index):
|
94 |
-
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
95 |
-
|
96 |
-
def __len__(self):
|
97 |
-
return len(self.audiopaths_and_text)
|
98 |
-
|
99 |
-
|
100 |
-
class TextAudioCollate():
|
101 |
-
""" Zero-pads model inputs and targets
|
102 |
-
"""
|
103 |
-
def __init__(self, return_ids=False):
|
104 |
-
self.return_ids = return_ids
|
105 |
-
|
106 |
-
def __call__(self, batch):
|
107 |
-
"""Collate's training batch from normalized text and aduio
|
108 |
-
PARAMS
|
109 |
-
------
|
110 |
-
batch: [text_normalized, spec_normalized, wav_normalized]
|
111 |
-
"""
|
112 |
-
# Right zero-pad all one-hot text sequences to max input length
|
113 |
-
_, ids_sorted_decreasing = torch.sort(
|
114 |
-
torch.LongTensor([x[1].size(1) for x in batch]),
|
115 |
-
dim=0, descending=True)
|
116 |
-
|
117 |
-
max_text_len = max([len(x[0]) for x in batch])
|
118 |
-
max_spec_len = max([x[1].size(1) for x in batch])
|
119 |
-
max_wav_len = max([x[2].size(1) for x in batch])
|
120 |
-
|
121 |
-
text_lengths = torch.LongTensor(len(batch))
|
122 |
-
spec_lengths = torch.LongTensor(len(batch))
|
123 |
-
wav_lengths = torch.LongTensor(len(batch))
|
124 |
-
|
125 |
-
text_padded = torch.LongTensor(len(batch), max_text_len)
|
126 |
-
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
127 |
-
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
128 |
-
text_padded.zero_()
|
129 |
-
spec_padded.zero_()
|
130 |
-
wav_padded.zero_()
|
131 |
-
for i in range(len(ids_sorted_decreasing)):
|
132 |
-
row = batch[ids_sorted_decreasing[i]]
|
133 |
-
|
134 |
-
text = row[0]
|
135 |
-
text_padded[i, :text.size(0)] = text
|
136 |
-
text_lengths[i] = text.size(0)
|
137 |
-
|
138 |
-
spec = row[1]
|
139 |
-
spec_padded[i, :, :spec.size(1)] = spec
|
140 |
-
spec_lengths[i] = spec.size(1)
|
141 |
-
|
142 |
-
wav = row[2]
|
143 |
-
wav_padded[i, :, :wav.size(1)] = wav
|
144 |
-
wav_lengths[i] = wav.size(1)
|
145 |
-
|
146 |
-
if self.return_ids:
|
147 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
|
148 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
|
149 |
-
|
150 |
-
|
151 |
-
"""Multi speaker version"""
|
152 |
-
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
153 |
-
"""
|
154 |
-
1) loads audio, speaker_id, text pairs
|
155 |
-
2) normalizes text and converts them to sequences of integers
|
156 |
-
3) computes spectrograms from audio files.
|
157 |
-
"""
|
158 |
-
def __init__(self, audiopaths_sid_text, hparams):
|
159 |
-
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
160 |
-
self.text_cleaners = hparams.text_cleaners
|
161 |
-
self.max_wav_value = hparams.max_wav_value
|
162 |
-
self.sampling_rate = hparams.sampling_rate
|
163 |
-
self.filter_length = hparams.filter_length
|
164 |
-
self.hop_length = hparams.hop_length
|
165 |
-
self.win_length = hparams.win_length
|
166 |
-
self.sampling_rate = hparams.sampling_rate
|
167 |
-
|
168 |
-
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
169 |
-
|
170 |
-
self.add_blank = hparams.add_blank
|
171 |
-
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
172 |
-
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
173 |
-
|
174 |
-
random.seed(1234)
|
175 |
-
random.shuffle(self.audiopaths_sid_text)
|
176 |
-
self._filter()
|
177 |
-
|
178 |
-
def _filter(self):
|
179 |
-
"""
|
180 |
-
Filter text & store spec lengths
|
181 |
-
"""
|
182 |
-
# Store spectrogram lengths for Bucketing
|
183 |
-
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
184 |
-
# spec_length = wav_length // hop_length
|
185 |
-
|
186 |
-
audiopaths_sid_text_new = []
|
187 |
-
lengths = []
|
188 |
-
for audiopath, sid, text in self.audiopaths_sid_text:
|
189 |
-
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
190 |
-
audiopaths_sid_text_new.append([audiopath, sid, text])
|
191 |
-
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
192 |
-
self.audiopaths_sid_text = audiopaths_sid_text_new
|
193 |
-
self.lengths = lengths
|
194 |
-
|
195 |
-
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
196 |
-
# separate filename, speaker_id and text
|
197 |
-
audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
|
198 |
-
text = self.get_text(text)
|
199 |
-
spec, wav = self.get_audio(audiopath)
|
200 |
-
sid = self.get_sid(sid)
|
201 |
-
return (text, spec, wav, sid)
|
202 |
-
|
203 |
-
def get_audio(self, filename):
|
204 |
-
audio, sampling_rate = load_wav_to_torch(filename)
|
205 |
-
if sampling_rate != self.sampling_rate:
|
206 |
-
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
207 |
-
sampling_rate, self.sampling_rate))
|
208 |
-
audio_norm = audio / self.max_wav_value
|
209 |
-
audio_norm = audio_norm.unsqueeze(0)
|
210 |
-
spec_filename = filename.replace(".wav", ".spec.pt")
|
211 |
-
if os.path.exists(spec_filename):
|
212 |
-
spec = torch.load(spec_filename)
|
213 |
-
else:
|
214 |
-
spec = spectrogram_torch(audio_norm, self.filter_length,
|
215 |
-
self.sampling_rate, self.hop_length, self.win_length,
|
216 |
-
center=False)
|
217 |
-
spec = torch.squeeze(spec, 0)
|
218 |
-
torch.save(spec, spec_filename)
|
219 |
-
return spec, audio_norm
|
220 |
-
|
221 |
-
def get_text(self, text):
|
222 |
-
if self.cleaned_text:
|
223 |
-
text_norm = cleaned_text_to_sequence(text)
|
224 |
-
else:
|
225 |
-
text_norm = text_to_sequence(text, self.text_cleaners)
|
226 |
-
if self.add_blank:
|
227 |
-
text_norm = commons.intersperse(text_norm, 0)
|
228 |
-
text_norm = torch.LongTensor(text_norm)
|
229 |
-
return text_norm
|
230 |
-
|
231 |
-
def get_sid(self, sid):
|
232 |
-
sid = torch.LongTensor([int(sid)])
|
233 |
-
return sid
|
234 |
-
|
235 |
-
def __getitem__(self, index):
|
236 |
-
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
237 |
-
|
238 |
-
def __len__(self):
|
239 |
-
return len(self.audiopaths_sid_text)
|
240 |
-
|
241 |
-
|
242 |
-
class TextAudioSpeakerCollate():
|
243 |
-
""" Zero-pads model inputs and targets
|
244 |
-
"""
|
245 |
-
def __init__(self, return_ids=False):
|
246 |
-
self.return_ids = return_ids
|
247 |
-
|
248 |
-
def __call__(self, batch):
|
249 |
-
"""Collate's training batch from normalized text, audio and speaker identities
|
250 |
-
PARAMS
|
251 |
-
------
|
252 |
-
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
253 |
-
"""
|
254 |
-
# Right zero-pad all one-hot text sequences to max input length
|
255 |
-
_, ids_sorted_decreasing = torch.sort(
|
256 |
-
torch.LongTensor([x[1].size(1) for x in batch]),
|
257 |
-
dim=0, descending=True)
|
258 |
-
|
259 |
-
max_text_len = max([len(x[0]) for x in batch])
|
260 |
-
max_spec_len = max([x[1].size(1) for x in batch])
|
261 |
-
max_wav_len = max([x[2].size(1) for x in batch])
|
262 |
-
|
263 |
-
text_lengths = torch.LongTensor(len(batch))
|
264 |
-
spec_lengths = torch.LongTensor(len(batch))
|
265 |
-
wav_lengths = torch.LongTensor(len(batch))
|
266 |
-
sid = torch.LongTensor(len(batch))
|
267 |
-
|
268 |
-
text_padded = torch.LongTensor(len(batch), max_text_len)
|
269 |
-
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
270 |
-
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
271 |
-
text_padded.zero_()
|
272 |
-
spec_padded.zero_()
|
273 |
-
wav_padded.zero_()
|
274 |
-
for i in range(len(ids_sorted_decreasing)):
|
275 |
-
row = batch[ids_sorted_decreasing[i]]
|
276 |
-
|
277 |
-
text = row[0]
|
278 |
-
text_padded[i, :text.size(0)] = text
|
279 |
-
text_lengths[i] = text.size(0)
|
280 |
-
|
281 |
-
spec = row[1]
|
282 |
-
spec_padded[i, :, :spec.size(1)] = spec
|
283 |
-
spec_lengths[i] = spec.size(1)
|
284 |
-
|
285 |
-
wav = row[2]
|
286 |
-
wav_padded[i, :, :wav.size(1)] = wav
|
287 |
-
wav_lengths[i] = wav.size(1)
|
288 |
-
|
289 |
-
sid[i] = row[3]
|
290 |
-
|
291 |
-
if self.return_ids:
|
292 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
293 |
-
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
294 |
-
|
295 |
-
|
296 |
-
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
297 |
-
"""
|
298 |
-
Maintain similar input lengths in a batch.
|
299 |
-
Length groups are specified by boundaries.
|
300 |
-
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
301 |
-
|
302 |
-
It removes samples which are not included in the boundaries.
|
303 |
-
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
304 |
-
"""
|
305 |
-
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
306 |
-
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
307 |
-
self.lengths = dataset.lengths
|
308 |
-
self.batch_size = batch_size
|
309 |
-
self.boundaries = boundaries
|
310 |
-
|
311 |
-
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
312 |
-
self.total_size = sum(self.num_samples_per_bucket)
|
313 |
-
self.num_samples = self.total_size // self.num_replicas
|
314 |
-
|
315 |
-
def _create_buckets(self):
|
316 |
-
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
317 |
-
for i in range(len(self.lengths)):
|
318 |
-
length = self.lengths[i]
|
319 |
-
idx_bucket = self._bisect(length)
|
320 |
-
if idx_bucket != -1:
|
321 |
-
buckets[idx_bucket].append(i)
|
322 |
-
|
323 |
-
for i in range(len(buckets) - 1, 0, -1):
|
324 |
-
if len(buckets[i]) == 0:
|
325 |
-
buckets.pop(i)
|
326 |
-
self.boundaries.pop(i+1)
|
327 |
-
|
328 |
-
num_samples_per_bucket = []
|
329 |
-
for i in range(len(buckets)):
|
330 |
-
len_bucket = len(buckets[i])
|
331 |
-
total_batch_size = self.num_replicas * self.batch_size
|
332 |
-
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
333 |
-
num_samples_per_bucket.append(len_bucket + rem)
|
334 |
-
return buckets, num_samples_per_bucket
|
335 |
-
|
336 |
-
def __iter__(self):
|
337 |
-
# deterministically shuffle based on epoch
|
338 |
-
g = torch.Generator()
|
339 |
-
g.manual_seed(self.epoch)
|
340 |
-
|
341 |
-
indices = []
|
342 |
-
if self.shuffle:
|
343 |
-
for bucket in self.buckets:
|
344 |
-
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
345 |
-
else:
|
346 |
-
for bucket in self.buckets:
|
347 |
-
indices.append(list(range(len(bucket))))
|
348 |
-
|
349 |
-
batches = []
|
350 |
-
for i in range(len(self.buckets)):
|
351 |
-
bucket = self.buckets[i]
|
352 |
-
len_bucket = len(bucket)
|
353 |
-
ids_bucket = indices[i]
|
354 |
-
num_samples_bucket = self.num_samples_per_bucket[i]
|
355 |
-
|
356 |
-
# add extra samples to make it evenly divisible
|
357 |
-
rem = num_samples_bucket - len_bucket
|
358 |
-
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
359 |
-
|
360 |
-
# subsample
|
361 |
-
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
362 |
-
|
363 |
-
# batching
|
364 |
-
for j in range(len(ids_bucket) // self.batch_size):
|
365 |
-
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
|
366 |
-
batches.append(batch)
|
367 |
-
|
368 |
-
if self.shuffle:
|
369 |
-
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
370 |
-
batches = [batches[i] for i in batch_ids]
|
371 |
-
self.batches = batches
|
372 |
-
|
373 |
-
assert len(self.batches) * self.batch_size == self.num_samples
|
374 |
-
return iter(self.batches)
|
375 |
-
|
376 |
-
def _bisect(self, x, lo=0, hi=None):
|
377 |
-
if hi is None:
|
378 |
-
hi = len(self.boundaries) - 1
|
379 |
-
|
380 |
-
if hi > lo:
|
381 |
-
mid = (hi + lo) // 2
|
382 |
-
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
|
383 |
-
return mid
|
384 |
-
elif x <= self.boundaries[mid]:
|
385 |
-
return self._bisect(x, lo, mid)
|
386 |
-
else:
|
387 |
-
return self._bisect(x, mid + 1, hi)
|
388 |
-
else:
|
389 |
-
return -1
|
390 |
-
|
391 |
-
def __len__(self):
|
392 |
-
return self.num_samples // self.batch_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
losses.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
import torch
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
import commons
|
5 |
-
|
6 |
|
7 |
def feature_loss(fmap_r, fmap_g):
|
8 |
loss = 0
|
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def feature_loss(fmap_r, fmap_g):
|
4 |
loss = 0
|
mel_processing.py
CHANGED
@@ -1,21 +1,9 @@
|
|
1 |
-
import math
|
2 |
-
import os
|
3 |
-
import random
|
4 |
import torch
|
5 |
-
from torch import nn
|
6 |
-
import torch.nn.functional as F
|
7 |
import torch.utils.data
|
8 |
-
import numpy as np
|
9 |
-
import librosa
|
10 |
-
import librosa.util as librosa_util
|
11 |
-
from librosa.util import normalize, pad_center, tiny
|
12 |
-
from scipy.signal import get_window
|
13 |
-
from scipy.io.wavfile import read
|
14 |
from librosa.filters import mel as librosa_mel_fn
|
15 |
|
16 |
MAX_WAV_VALUE = 32768.0
|
17 |
|
18 |
-
|
19 |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
"""
|
21 |
PARAMS
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import torch.utils.data
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from librosa.filters import mel as librosa_mel_fn
|
4 |
|
5 |
MAX_WAV_VALUE = 32768.0
|
6 |
|
|
|
7 |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
8 |
"""
|
9 |
PARAMS
|
modules.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import copy
|
2 |
import math
|
3 |
import numpy as np
|
4 |
-
import scipy
|
5 |
import torch
|
6 |
from torch import nn
|
7 |
from torch.nn import functional as F
|
|
|
1 |
import copy
|
2 |
import math
|
3 |
import numpy as np
|
|
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
from torch.nn import functional as F
|
preprocess.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import text
|
3 |
-
from utils import load_filepaths_and_text
|
4 |
-
|
5 |
-
if __name__ == '__main__':
|
6 |
-
parser = argparse.ArgumentParser()
|
7 |
-
parser.add_argument("--out_extension", default="cleaned")
|
8 |
-
parser.add_argument("--text_index", default=1, type=int)
|
9 |
-
parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
|
10 |
-
parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
|
11 |
-
|
12 |
-
args = parser.parse_args()
|
13 |
-
|
14 |
-
|
15 |
-
for filelist in args.filelists:
|
16 |
-
print("START:", filelist)
|
17 |
-
filepaths_and_text = load_filepaths_and_text(filelist)
|
18 |
-
for i in range(len(filepaths_and_text)):
|
19 |
-
original_text = filepaths_and_text[i][args.text_index]
|
20 |
-
cleaned_text = text._clean_text(original_text, args.text_cleaners)
|
21 |
-
filepaths_and_text[i][args.text_index] = cleaned_text
|
22 |
-
|
23 |
-
new_filelist = filelist + "." + args.out_extension
|
24 |
-
with open(new_filelist, "w", encoding="utf-8") as f:
|
25 |
-
f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|