Spaces:
Paused
Paused
File size: 16,607 Bytes
66033d4 8631f1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import argparse, os, sys, glob
import datetime, time
from omegaconf import OmegaConf
from tqdm import tqdm
from einops import rearrange, repeat
from collections import OrderedDict
import torch
import torchvision
import torchvision.transforms as transforms
from pytorch_lightning import seed_everything
from PIL import Image
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
from lvdm.models.samplers.ddim import DDIMSampler
from lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond
from utils.utils import instantiate_from_config
def get_filelist(data_dir, postfixes):
patterns = [os.path.join(data_dir, f"*.{postfix}") for postfix in postfixes]
file_list = []
for pattern in patterns:
file_list.extend(glob.glob(pattern))
file_list.sort()
return file_list
def load_model_checkpoint(model, ckpt):
state_dict = torch.load(ckpt, map_location="cpu")
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
try:
model.load_state_dict(state_dict, strict=True)
except:
## rename the keys for 256x256 model
new_pl_sd = OrderedDict()
for k,v in state_dict.items():
new_pl_sd[k] = v
for k in list(new_pl_sd.keys()):
if "framestride_embed" in k:
new_key = k.replace("framestride_embed", "fps_embedding")
new_pl_sd[new_key] = new_pl_sd[k]
del new_pl_sd[k]
model.load_state_dict(new_pl_sd, strict=True)
else:
# deepspeed
new_pl_sd = OrderedDict()
for key in state_dict['module'].keys():
new_pl_sd[key[16:]]=state_dict['module'][key]
model.load_state_dict(new_pl_sd)
print('>>> model checkpoint loaded.')
return model
def load_prompts(prompt_file):
f = open(prompt_file, 'r')
prompt_list = []
for idx, line in enumerate(f.readlines()):
l = line.strip()
if len(l) != 0:
prompt_list.append(l)
f.close()
return prompt_list
def load_data_prompts(data_dir, video_size=(256,256), video_frames=16, gfi=False):
transform = transforms.Compose([
transforms.Resize(min(video_size)),
transforms.CenterCrop(video_size),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
## load prompts
prompt_file = get_filelist(data_dir, ['txt'])
assert len(prompt_file) > 0, "Error: found NO prompt file!"
###### default prompt
default_idx = 0
default_idx = min(default_idx, len(prompt_file)-1)
if len(prompt_file) > 1:
print(f"Warning: multiple prompt files exist. The one {os.path.split(prompt_file[default_idx])[1]} is used.")
## only use the first one (sorted by name) if multiple exist
## load video
file_list = get_filelist(data_dir, ['jpg', 'png', 'jpeg', 'JPEG', 'PNG'])
# assert len(file_list) == n_samples, "Error: data and prompts are NOT paired!"
data_list = []
filename_list = []
prompt_list = load_prompts(prompt_file[default_idx])
n_samples = len(prompt_list)
for idx in range(n_samples):
image = Image.open(file_list[idx]).convert('RGB')
image_tensor = transform(image).unsqueeze(1) # [c,1,h,w]
frame_tensor = repeat(image_tensor, 'c t h w -> c (repeat t) h w', repeat=video_frames)
data_list.append(frame_tensor)
_, filename = os.path.split(file_list[idx])
filename_list.append(filename)
return filename_list, data_list, prompt_list
def save_results(prompt, samples, filename, fakedir, fps=8, loop=False):
filename = filename.split('.')[0]+'.mp4'
prompt = prompt[0] if isinstance(prompt, list) else prompt
## save video
videos = [samples]
savedirs = [fakedir]
for idx, video in enumerate(videos):
if video is None:
continue
# b,c,t,h,w
video = video.detach().cpu()
video = torch.clamp(video.float(), -1., 1.)
n = video.shape[0]
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
if loop:
video = video[:-1,...]
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] #[3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, h, n*w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
path = os.path.join(savedirs[idx], filename)
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) ## crf indicates the quality
def save_results_seperate(prompt, samples, filename, fakedir, fps=10, loop=False):
prompt = prompt[0] if isinstance(prompt, list) else prompt
## save video
videos = [samples]
savedirs = [fakedir]
for idx, video in enumerate(videos):
if video is None:
continue
# b,c,t,h,w
video = video.detach().cpu()
if loop: # remove the last frame
video = video[:,:,:-1,...]
video = torch.clamp(video.float(), -1., 1.)
n = video.shape[0]
for i in range(n):
grid = video[i,...]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(1, 2, 3, 0) #thwc
path = os.path.join(savedirs[idx].replace('samples', 'samples_separate'), f'{filename.split(".")[0]}_sample{i}.mp4')
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'})
def get_latent_z(model, videos):
b, c, t, h, w = videos.shape
x = rearrange(videos, 'b c t h w -> (b t) c h w')
z = model.encode_first_stage(x)
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
return z
def image_guided_synthesis(model, prompts, videos, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \
unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False, multiple_cond_cfg=False, loop=False, gfi=False, timestep_spacing='uniform', guidance_rescale=0.0, **kwargs):
ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model)
batch_size = noise_shape[0]
fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=model.device)
if not text_input:
prompts = [""]*batch_size
img = videos[:,:,0] #bchw
img_emb = model.embedder(img) ## blc
img_emb = model.image_proj_model(img_emb)
cond_emb = model.get_learned_conditioning(prompts)
cond = {"c_crossattn": [torch.cat([cond_emb,img_emb], dim=1)]}
if model.model.conditioning_key == 'hybrid':
z = get_latent_z(model, videos) # b c t h w
if loop or gfi:
img_cat_cond = torch.zeros_like(z)
img_cat_cond[:,:,0,:,:] = z[:,:,0,:,:]
img_cat_cond[:,:,-1,:,:] = z[:,:,-1,:,:]
else:
img_cat_cond = z[:,:,:1,:,:]
img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2])
cond["c_concat"] = [img_cat_cond] # b c 1 h w
if unconditional_guidance_scale != 1.0:
if model.uncond_type == "empty_seq":
prompts = batch_size * [""]
uc_emb = model.get_learned_conditioning(prompts)
elif model.uncond_type == "zero_embed":
uc_emb = torch.zeros_like(cond_emb)
uc_img_emb = model.embedder(torch.zeros_like(img)) ## b l c
uc_img_emb = model.image_proj_model(uc_img_emb)
uc = {"c_crossattn": [torch.cat([uc_emb,uc_img_emb],dim=1)]}
if model.model.conditioning_key == 'hybrid':
uc["c_concat"] = [img_cat_cond]
else:
uc = None
## we need one more unconditioning image=yes, text=""
if multiple_cond_cfg and cfg_img != 1.0:
uc_2 = {"c_crossattn": [torch.cat([uc_emb,img_emb],dim=1)]}
if model.model.conditioning_key == 'hybrid':
uc_2["c_concat"] = [img_cat_cond]
kwargs.update({"unconditional_conditioning_img_nonetext": uc_2})
else:
kwargs.update({"unconditional_conditioning_img_nonetext": None})
z0 = None
cond_mask = None
batch_variants = []
for _ in range(n_samples):
if z0 is not None:
cond_z0 = z0.clone()
kwargs.update({"clean_cond": True})
else:
cond_z0 = None
if ddim_sampler is not None:
samples, _ = ddim_sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=batch_size,
shape=noise_shape[1:],
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
cfg_img=cfg_img,
mask=cond_mask,
x0=cond_z0,
fs=fs,
timestep_spacing=timestep_spacing,
guidance_rescale=guidance_rescale,
**kwargs
)
## reconstruct from latent to pixel space
batch_images = model.decode_first_stage(samples)
batch_variants.append(batch_images)
## variants, batch, c, t, h, w
batch_variants = torch.stack(batch_variants)
return batch_variants.permute(1, 0, 2, 3, 4, 5)
def run_inference(args, gpu_num, gpu_no):
## model config
config = OmegaConf.load(args.config)
model_config = config.pop("model", OmegaConf.create())
## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set"
model_config['params']['unet_config']['params']['use_checkpoint'] = False
model = instantiate_from_config(model_config)
model = model.cuda(gpu_no)
model.perframe_ae = args.perframe_ae
assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, args.ckpt_path)
model.eval()
## run over data
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
assert args.bs == 1, "Current implementation only support [batch size = 1]!"
## latent noise shape
h, w = args.height // 8, args.width // 8
channels = model.model.diffusion_model.out_channels
n_frames = args.video_length
print(f'Inference with {n_frames} frames')
noise_shape = [args.bs, channels, n_frames, h, w]
fakedir = os.path.join(args.savedir, "samples")
fakedir_separate = os.path.join(args.savedir, "samples_separate")
# os.makedirs(fakedir, exist_ok=True)
os.makedirs(fakedir_separate, exist_ok=True)
## prompt file setting
assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!"
filename_list, data_list, prompt_list = load_data_prompts(args.prompt_dir, video_size=(args.height, args.width), video_frames=n_frames, gfi=args.gfi)
num_samples = len(prompt_list)
samples_split = num_samples // gpu_num
print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples))
#indices = random.choices(list(range(0, num_samples)), k=samples_per_device)
indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1)))
prompt_list_rank = [prompt_list[i] for i in indices]
data_list_rank = [data_list[i] for i in indices]
filename_list_rank = [filename_list[i] for i in indices]
start = time.time()
with torch.no_grad(), torch.cuda.amp.autocast():
for idx, indice in tqdm(enumerate(range(0, len(prompt_list_rank), args.bs)), desc='Sample Batch'):
prompts = prompt_list_rank[indice:indice+args.bs]
videos = data_list_rank[indice:indice+args.bs]
filenames = filename_list_rank[indice:indice+args.bs]
if isinstance(videos, list):
videos = torch.stack(videos, dim=0).to("cuda")
else:
videos = videos.unsqueeze(0).to("cuda")
batch_samples = image_guided_synthesis(model, prompts, videos, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \
args.unconditional_guidance_scale, args.cfg_img, args.frame_stride, args.text_input, args.multiple_cond_cfg, args.loop, args.gfi, args.timestep_spacing, args.guidance_rescale)
## save each example individually
for nn, samples in enumerate(batch_samples):
## samples : [n_samples,c,t,h,w]
prompt = prompts[nn]
filename = filenames[nn]
# save_results(prompt, samples, filename, fakedir, fps=8, loop=args.loop)
save_results_seperate(prompt, samples, filename, fakedir, fps=8, loop=args.loop)
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds")
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", type=str, default=None, help="results saving path")
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path")
parser.add_argument("--config", type=str, help="config (yaml) path")
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts")
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
parser.add_argument("--bs", type=int, default=1, help="batch size for inference, should be one")
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
parser.add_argument("--frame_stride", type=int, default=3, help="frame stride control for 256 model (larger->larger motion), FPS control for 512 or 1024 model (smaller->larger motion)")
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
parser.add_argument("--seed", type=int, default=123, help="seed for seed_everything")
parser.add_argument("--video_length", type=int, default=16, help="inference video length")
parser.add_argument("--negative_prompt", action='store_true', default=False, help="negative prompt")
parser.add_argument("--text_input", action='store_true', default=False, help="input text to I2V model or not")
parser.add_argument("--multiple_cond_cfg", action='store_true', default=False, help="use multi-condition cfg or not")
parser.add_argument("--cfg_img", type=float, default=None, help="guidance scale for image conditioning")
parser.add_argument("--timestep_spacing", type=str, default="uniform", help="The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.")
parser.add_argument("--guidance_rescale", type=float, default=0.0, help="guidance rescale in [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891)")
parser.add_argument("--perframe_ae", action='store_true', default=False, help="if we use per-frame AE decoding, set it to True to save GPU memory, especially for the model of 576x1024")
## currently not support looping video and generative frame interpolation
parser.add_argument("--loop", action='store_true', default=False, help="generate looping videos or not")
parser.add_argument("--gfi", action='store_true', default=False, help="generate generative frame interpolation (gfi) or not")
return parser
if __name__ == '__main__':
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
print("@DynamiCrafter cond-Inference: %s"%now)
parser = get_parser()
args = parser.parse_args()
seed_everything(args.seed)
rank, gpu_num = 0, 1
run_inference(args, gpu_num, rank) |