Spaces:
Runtime error
Runtime error
import soundfile as sf | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import gradio as gr | |
import sox | |
import os | |
def convert(inputfile, outfile): | |
sox_tfm = sox.Transformer() | |
sox_tfm.set_output_format( | |
file_type="wav", channels=1, encoding="signed-integer", rate=16000, bits=16 | |
) | |
sox_tfm.build(inputfile, outfile) | |
api_token = os.getenv("API_TOKEN") | |
model_name = "shahukareem/wav2vec2-large-xlsr-53-dhivehi" | |
processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=api_token) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=api_token) | |
def parse_transcription(wav_file): | |
filename = wav_file.name.split('.')[0] | |
convert(wav_file.name, filename + "16k.wav") | |
speech, _ = sf.read(filename + "16k.wav") | |
input_values = processor(speech, sampling_rate=16_000, return_tensors="pt").input_values | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) | |
return transcription | |
output = gr.outputs.Textbox(label="The transcript") | |
input_ = gr.inputs.Audio(source="microphone", type="file") | |
gr.Interface(parse_transcription, inputs=input_, outputs=[output], | |
analytics_enabled=False, | |
show_tips=False, | |
theme='huggingface', | |
layout='vertical', | |
title="Speech Recognition for Dhivehi", | |
description="Speech Recognition Live Demo for Dhivehi", | |
enable_queue=True).launch( inline=False) |