Spaces:
Paused
Paused
from diffusers import ( | |
ControlNetModel, | |
StableDiffusionControlNetPipeline, | |
UniPCMultistepScheduler, | |
) | |
import torch | |
import PIL | |
import PIL.Image | |
from diffusers.loaders import UNet2DConditionLoadersMixin | |
from typing import Dict | |
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor | |
import functools | |
from cross_frame_attention import CrossFrameAttnProcessor | |
TEXT_ENCODER_NAME = "text_encoder" | |
UNET_NAME = "unet" | |
NEGATIVE_PROMPT = "blurry, text, caption, lowquality, lowresolution, low res, grainy, ugly" | |
def attach_loaders_mixin(model): | |
# hacky way to make ControlNet work with LoRA. This may not be required in future versions of diffusers. | |
model.text_encoder_name = TEXT_ENCODER_NAME | |
model.unet_name = UNET_NAME | |
r""" | |
Attach the [`UNet2DConditionLoadersMixin`] to a model. This will add the | |
all the methods from the mixin 'UNet2DConditionLoadersMixin' to the model. | |
""" | |
# mixin_instance = UNet2DConditionLoadersMixin() | |
for attr_name, attr_value in vars(UNet2DConditionLoadersMixin).items(): | |
# print(attr_name) | |
if callable(attr_value): | |
# setattr(model, attr_name, functools.partialmethod(attr_value, model).__get__(model, model.__class__)) | |
setattr(model, attr_name, functools.partial(attr_value, model)) | |
return model | |
def set_attn_processor(module, processor, _remove_lora=False): | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor, _remove_lora=_remove_lora) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in module.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
class ControlNetX(ControlNetModel, UNet2DConditionLoadersMixin): | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
# This may not be required in future versions of diffusers. | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
class ControlNetPipeline: | |
def __init__(self, checkpoint="lllyasviel/control_v11f1p_sd15_depth", sd_checkpoint="runwayml/stable-diffusion-v1-5") -> None: | |
controlnet = ControlNetX.from_pretrained(checkpoint) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
sd_checkpoint, controlnet=controlnet, requires_safety_checker=False, safety_checker=None, | |
torch_dtype=torch.float16) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
def __call__(self, | |
prompt: str="", | |
height=512, | |
width=512, | |
control_image=None, | |
controlnet_conditioning_scale=1.0, | |
num_inference_steps: int=20, | |
**kwargs) -> PIL.Image.Image: | |
out = self.pipe(prompt, control_image, | |
height=height, width=width, | |
num_inference_steps=num_inference_steps, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
**kwargs).images | |
return out[0] if len(out) == 1 else out | |
def to(self, *args, **kwargs): | |
self.pipe.to(*args, **kwargs) | |
return self | |
class LooseControlNet(ControlNetPipeline): | |
def __init__(self, loose_control_weights="shariqfarooq/loose-control-3dbox", cn_checkpoint="lllyasviel/control_v11f1p_sd15_depth", sd_checkpoint="runwayml/stable-diffusion-v1-5") -> None: | |
super().__init__(cn_checkpoint, sd_checkpoint) | |
self.pipe.controlnet = attach_loaders_mixin(self.pipe.controlnet) | |
self.pipe.controlnet.load_attn_procs(loose_control_weights) | |
def set_normal_attention(self): | |
self.pipe.unet.set_attn_processor(AttnProcessor()) | |
def set_cf_attention(self, _remove_lora=False): | |
for upblocks in self.pipe.unet.up_blocks[-2:]: | |
set_attn_processor(upblocks, CrossFrameAttnProcessor(), _remove_lora=_remove_lora) | |
def edit(self, depth, depth_edit, prompt, prompt_edit=None, seed=42, seed_edit=None, negative_prompt=NEGATIVE_PROMPT, controlnet_conditioning_scale=1.0, num_inference_steps=20, **kwargs): | |
if prompt_edit is None: | |
prompt_edit = prompt | |
if seed_edit is None: | |
seed_edit = seed | |
seed = int(seed) | |
seed_edit = int(seed_edit) | |
control_image = [depth, depth_edit] | |
prompt = [prompt, prompt_edit] | |
generator = [torch.Generator().manual_seed(seed), torch.Generator().manual_seed(seed_edit)] | |
gen = self.pipe(prompt, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator, num_inference_steps=num_inference_steps, negative_prompt=negative_prompt, **kwargs)[-1] | |
return gen |