Spaces:
Running
on
A10G
Running
on
A10G
File size: 1,174 Bytes
99b3515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from utils import colorize
from PIL import Image
import tempfile
def predict_depth(model, image):
depth = model.infer_pil(image)
return depth
def create_demo(model):
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input').style(height="auto")
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output')
raw_file = gr.File(label="16-bit raw depth, multiplier:256")
submit = gr.Button("Submit")
def on_submit(image):
depth = predict_depth(model, image)
colored_depth = colorize(depth, cmap='gray_r')
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth = Image.fromarray((depth*256).astype('uint16'))
raw_depth.save(tmp.name)
return [colored_depth, tmp.name]
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file])
examples = gr.Examples(examples=["examples/person_1.jpeg", "examples/person_2.jpeg", "examples/person-leaves.png", "examples/living-room.jpeg"],
inputs=[input_image]) |