File size: 16,208 Bytes
9afcee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


def get_surface_normalv2(xyz, patch_size=5):
    """
    xyz: xyz coordinates
    patch: [p1, p2, p3,
            p4, p5, p6,
            p7, p8, p9]
    surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)]
    return: normal [h, w, 3, b]
    """
    b, h, w, c = xyz.shape
    half_patch = patch_size // 2
    xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device)
    xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz

    # xyz_left_top = xyz_pad[:, :h, :w, :]  # p1
    # xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9
    # xyz_left_bottom = xyz_pad[:, -h:, :w, :]   # p7
    # xyz_right_top = xyz_pad[:, :h, -w:, :]  # p3
    # xyz_cross1 = xyz_left_top - xyz_right_bottom  # p1p9
    # xyz_cross2 = xyz_left_bottom - xyz_right_top  # p7p3

    xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :]  # p4
    xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :]  # p6
    xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :]  # p2
    xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :]  # p8
    xyz_horizon = xyz_left - xyz_right  # p4p6
    xyz_vertical = xyz_top - xyz_bottom  # p2p8

    xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :]  # p4
    xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :]  # p6
    xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :]  # p2
    xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :]  # p8
    xyz_horizon_in = xyz_left_in - xyz_right_in  # p4p6
    xyz_vertical_in = xyz_top_in - xyz_bottom_in  # p2p8

    n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3)
    n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3)

    # re-orient normals consistently
    orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0
    n_img_1[orient_mask] *= -1
    orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0
    n_img_2[orient_mask] *= -1

    n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True))
    n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8)

    n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True))
    n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8)

    # average 2 norms
    n_img_aver = n_img1_norm + n_img2_norm
    n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True))
    n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8)
    # re-orient normals consistently
    orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0
    n_img_aver_norm[orient_mask] *= -1
    n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0))  # [h, w, c, b]

    # a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze()
    # plt.imshow(np.abs(a), cmap='rainbow')
    # plt.show()
    return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0))


def init_image_coor(height, width):
    x_row = np.arange(0, width)
    x = np.tile(x_row, (height, 1))
    x = x[np.newaxis, :, :]
    x = x.astype(np.float32)
    x = torch.from_numpy(x.copy()).cuda()
    u_u0 = x - width/2.0

    y_col = np.arange(0, height)  # y_col = np.arange(0, height)
    y = np.tile(y_col, (width, 1)).T
    y = y[np.newaxis, :, :]
    y = y.astype(np.float32)
    y = torch.from_numpy(y.copy()).cuda()
    v_v0 = y - height/2.0
    return u_u0, v_v0


def depth_to_xyz(depth, focal_length):
    b, c, h, w = depth.shape
    u_u0, v_v0 = init_image_coor(h, w)
    x = u_u0 * depth / focal_length
    y = v_v0 * depth / focal_length
    z = depth
    pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c]
    return pw



def surface_normal_from_depth(depth, focal_length, valid_mask=None):
    # para depth: depth map, [b, c, h, w]
    b, c, h, w = depth.shape
    focal_length = focal_length[:, None, None, None]
    depth_filter = torch.nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1)
    depth_filter = torch.nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1)
    xyz = depth_to_xyz(depth_filter, focal_length)
    sn_batch = []
    for i in range(b):
        xyz_i = xyz[i, :][None, :, :, :]
        normal = get_surface_normalv2(xyz_i)
        sn_batch.append(normal)
    sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1))  # [b, c, h, w]
    mask_invalid = (~valid_mask).repeat(1, 3, 1, 1)
    sn_batch[mask_invalid] = 0.0

    return 


###########
# EDGE-GUIDED SAMPLING
# input:
# inputs[i,:], targets[i, :], masks[i, :], edges_img[i], thetas_img[i], masks[i, :], h, w
# return:
# inputs_A, inputs_B, targets_A, targets_B, masks_A, masks_B
###########
def ind2sub(idx, cols):
    r = idx / cols
    c = idx - r * cols
    return r, c

def sub2ind(r, c, cols):
    idx = r * cols + c
    return idx


def edgeGuidedSampling(inputs, targets, edges_img, thetas_img, masks, h, w):
    # find edges
    edges_max = edges_img.max()
    edges_min = edges_img.min()
    edges_mask = edges_img.ge(edges_max*0.1)
    edges_loc = edges_mask.nonzero()

    thetas_edge = torch.masked_select(thetas_img, edges_mask)
    minlen = thetas_edge.size()[0]

    # find anchor points (i.e, edge points)
    sample_num = minlen
    index_anchors = torch.randint(0, minlen, (sample_num,), dtype=torch.long).cuda()
    theta_anchors = torch.gather(thetas_edge, 0, index_anchors)
    row_anchors, col_anchors = ind2sub(edges_loc[index_anchors].squeeze(1), w)
    ## compute the coordinates of 4-points,  distances are from [2, 30]
    distance_matrix = torch.randint(3, 20, (4,sample_num)).cuda()
    pos_or_neg = torch.ones(4,sample_num).cuda()
    pos_or_neg[:2,:] = -pos_or_neg[:2,:]
    distance_matrix = distance_matrix.float() * pos_or_neg
    col = col_anchors.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.cos(theta_anchors).unsqueeze(0)).long()
    row = row_anchors.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.sin(theta_anchors).unsqueeze(0)).long()

    # constrain 0=<c<=w, 0<=r<=h
    # Note: index should minus 1
    col[col<0] = 0
    col[col>w-1] = w-1
    row[row<0] = 0
    row[row>h-1] = h-1

    # a-b, b-c, c-d
    a = sub2ind(row[0,:], col[0,:], w)
    b = sub2ind(row[1,:], col[1,:], w)
    c = sub2ind(row[2,:], col[2,:], w)
    d = sub2ind(row[3,:], col[3,:], w)
    A = torch.cat((a,b,c), 0)
    B = torch.cat((b,c,d), 0)

    inputs_A = inputs[:, A]
    inputs_B = inputs[:, B]
    targets_A = targets[:, A]
    targets_B = targets[:, B]
    masks_A = torch.gather(masks, 0, A.long())
    masks_B = torch.gather(masks, 0, B.long())
    return inputs_A, inputs_B, targets_A, targets_B, masks_A, masks_B, sample_num, row, col


###########
# RANDOM SAMPLING
# input:
# inputs[i,:], targets[i, :], masks[i, :], self.mask_value, self.point_pairs
# return:
# inputs_A, inputs_B, targets_A, targets_B, consistent_masks_A, consistent_masks_B
###########
def randomSamplingNormal(inputs, targets, masks, sample_num):

    # find A-B point pairs from predictions
    num_effect_pixels = torch.sum(masks)
    shuffle_effect_pixels = torch.randperm(num_effect_pixels).cuda()
    valid_inputs = inputs[:, masks]
    valid_targes = targets[:, masks]
    inputs_A = valid_inputs[:, shuffle_effect_pixels[0:sample_num*2:2]]
    inputs_B = valid_inputs[:, shuffle_effect_pixels[1:sample_num*2:2]]
    # find corresponding pairs from GT
    targets_A = valid_targes[:, shuffle_effect_pixels[0:sample_num*2:2]]
    targets_B = valid_targes[:, shuffle_effect_pixels[1:sample_num*2:2]]
    if inputs_A.shape[1] != inputs_B.shape[1]:
        num_min = min(targets_A.shape[1], targets_B.shape[1])
        inputs_A = inputs_A[:, :num_min]
        inputs_B = inputs_B[:, :num_min]
        targets_A = targets_A[:, :num_min]
        targets_B = targets_B[:, :num_min]
    return inputs_A, inputs_B, targets_A, targets_B


class EdgeguidedNormalRegressionLoss(nn.Module):
    def __init__(self, point_pairs=10000, cos_theta1=0.3, cos_theta2=0.95, cos_theta3=0.5, cos_theta4=0.86, mask_value=-1e-8, max_threshold=10.1):
        super(EdgeguidedNormalRegressionLoss, self).__init__()
        self.point_pairs = point_pairs # number of point pairs
        self.mask_value = mask_value
        self.max_threshold = max_threshold
        self.cos_theta1 = cos_theta1  # 75 degree
        self.cos_theta2 = cos_theta2  # 10 degree
        self.cos_theta3 = cos_theta3  # 60 degree
        self.cos_theta4 = cos_theta4  # 30 degree
        self.kernel = torch.tensor(np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=np.float32), requires_grad=False)[None, None, :, :].cuda()

    def scale_shift_pred_depth(self, pred, gt):
        b, c, h, w = pred.shape
        mask = (gt > self.mask_value) & (gt < self.max_threshold)  # [b, c, h, w]
        EPS = 1e-6 * torch.eye(2, dtype=pred.dtype, device=pred.device)
        scale_shift_batch = []
        ones_img = torch.ones((1, h, w), dtype=pred.dtype, device=pred.device)
        for i in range(b):
            mask_i = mask[i, ...]
            pred_valid_i = pred[i, ...][mask_i]
            ones_i = ones_img[mask_i]
            pred_valid_ones_i = torch.stack((pred_valid_i, ones_i), dim=0)  # [c+1, n]
            A_i = torch.matmul(pred_valid_ones_i, pred_valid_ones_i.permute(1, 0))  # [2, 2]
            A_inverse = torch.inverse(A_i + EPS)

            gt_i = gt[i, ...][mask_i]
            B_i = torch.matmul(pred_valid_ones_i, gt_i)[:, None]  # [2, 1]
            scale_shift_i = torch.matmul(A_inverse, B_i)  # [2, 1]
            scale_shift_batch.append(scale_shift_i)
        scale_shift_batch = torch.stack(scale_shift_batch, dim=0)  # [b, 2, 1]
        ones = torch.ones_like(pred)
        pred_ones = torch.cat((pred, ones), dim=1)  # [b, 2, h, w]
        pred_scale_shift = torch.matmul(pred_ones.permute(0, 2, 3, 1).reshape(b, h * w, 2), scale_shift_batch)  # [b, h*w, 1]
        pred_scale_shift = pred_scale_shift.permute(0, 2, 1).reshape((b, c, h, w))
        return pred_scale_shift

    def getEdge(self, images):
        n,c,h,w = images.size()
        a = torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).cuda().view((1,1,3,3)).repeat(1, 1, 1, 1)
        b = torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).cuda().view((1,1,3,3)).repeat(1, 1, 1, 1)
        if c == 3:
            gradient_x = F.conv2d(images[:,0,:,:].unsqueeze(1), a)
            gradient_y = F.conv2d(images[:,0,:,:].unsqueeze(1), b)
        else:
            gradient_x = F.conv2d(images, a)
            gradient_y = F.conv2d(images, b)
        edges = torch.sqrt(torch.pow(gradient_x,2)+ torch.pow(gradient_y,2))
        edges = F.pad(edges, (1,1,1,1), "constant", 0)
        thetas = torch.atan2(gradient_y, gradient_x)
        thetas = F.pad(thetas, (1,1,1,1), "constant", 0)
        return edges, thetas

    def getNormalEdge(self, normals):
        n,c,h,w = normals.size()
        a = torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).cuda().view((1,1,3,3)).repeat(3, 1, 1, 1)
        b = torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).cuda().view((1,1,3,3)).repeat(3, 1, 1, 1)
        gradient_x = torch.abs(F.conv2d(normals, a, groups=c))
        gradient_y = torch.abs(F.conv2d(normals, b, groups=c))
        gradient_x = gradient_x.mean(dim=1, keepdim=True)
        gradient_y = gradient_y.mean(dim=1, keepdim=True)
        edges = torch.sqrt(torch.pow(gradient_x,2)+ torch.pow(gradient_y,2))
        edges = F.pad(edges, (1,1,1,1), "constant", 0)
        thetas = torch.atan2(gradient_y, gradient_x)
        thetas = F.pad(thetas, (1,1,1,1), "constant", 0)
        return edges, thetas

    def forward(self, pred_depths, gt_depths, images, focal_length):
        """
        inputs and targets: surface normal image
        images: rgb images
        """
        masks = gt_depths > self.mask_value
        #pred_depths_ss = self.scale_shift_pred_depth(pred_depths, gt_depths)
        inputs = surface_normal_from_depth(pred_depths, focal_length, valid_mask=masks)
        targets = surface_normal_from_depth(gt_depths, focal_length, valid_mask=masks)
        # find edges from RGB
        edges_img, thetas_img = self.getEdge(images)
        # find edges from normals
        edges_normal, thetas_normal = self.getNormalEdge(targets)
        mask_img_border = torch.ones_like(edges_normal)  # normals on the borders
        mask_img_border[:, :, 5:-5, 5:-5] = 0
        edges_normal[mask_img_border.bool()] = 0
        # find edges from depth
        edges_depth, _ = self.getEdge(gt_depths)
        edges_depth_mask = edges_depth.ge(edges_depth.max() * 0.1)
        edges_mask_dilate = torch.clamp(torch.nn.functional.conv2d(edges_depth_mask.float(), self.kernel, padding=(1, 1)), 0,
                                       1).bool()
        edges_normal[edges_mask_dilate] = 0
        edges_img[edges_mask_dilate] = 0
        #=============================
        n,c,h,w = targets.size()

        inputs = inputs.contiguous().view(n, c, -1).double()
        targets = targets.contiguous().view(n, c, -1).double()
        masks = masks.contiguous().view(n, -1)
        edges_img = edges_img.contiguous().view(n, -1).double()
        thetas_img = thetas_img.contiguous().view(n, -1).double()
        edges_normal = edges_normal.view(n, -1).double()
        thetas_normal = thetas_normal.view(n, -1).double()

        # initialization
        loss = torch.DoubleTensor([0.0]).cuda()

        for i in range(n):
            # Edge-Guided sampling
            inputs_A, inputs_B, targets_A, targets_B, masks_A, masks_B, sample_num, row_img, col_img = edgeGuidedSampling(inputs[i,:], targets[i, :], edges_img[i], thetas_img[i], masks[i, :], h, w)
            normal_inputs_A, normal_inputs_B, normal_targets_A, normal_targets_B, normal_masks_A, normal_masks_B, normal_sample_num, row_normal, col_normal = edgeGuidedSampling(inputs[i,:], targets[i, :], edges_normal[i], thetas_normal[i], masks[i, :], h, w)


            # Combine EGS + EGNS
            inputs_A = torch.cat((inputs_A, normal_inputs_A), 1)
            inputs_B = torch.cat((inputs_B, normal_inputs_B), 1)
            targets_A = torch.cat((targets_A, normal_targets_A), 1)
            targets_B = torch.cat((targets_B, normal_targets_B), 1)
            masks_A = torch.cat((masks_A, normal_masks_A), 0)
            masks_B = torch.cat((masks_B, normal_masks_B), 0)

            # consider forward-backward consistency checking, i.e, only compute losses of point pairs with valid GT
            consistency_mask = masks_A & masks_B

            #GT ordinal relationship
            target_cos = torch.abs(torch.sum(targets_A * targets_B, dim=0))
            input_cos = torch.abs(torch.sum(inputs_A * inputs_B, dim=0))
            # ranking regression
            #loss += torch.mean(torch.abs(target_cos[consistency_mask] - input_cos[consistency_mask]))

            # Ranking for samples
            mask_cos75 = target_cos < self.cos_theta1
            mask_cos10 = target_cos > self.cos_theta2
            # Regression for samples
            loss += torch.sum(torch.abs(target_cos[mask_cos75 & consistency_mask] - input_cos[mask_cos75 & consistency_mask])) / (torch.sum(mask_cos75 & consistency_mask)+1e-8)
            loss += torch.sum(torch.abs(target_cos[mask_cos10 & consistency_mask] - input_cos[mask_cos10 & consistency_mask])) / (torch.sum(mask_cos10 & consistency_mask)+1e-8)

            # Random Sampling regression
            random_sample_num = torch.sum(mask_cos10 & consistency_mask) + torch.sum(torch.sum(mask_cos75 & consistency_mask))
            random_inputs_A, random_inputs_B, random_targets_A, random_targets_B = randomSamplingNormal(inputs[i,:], targets[i, :], masks[i, :], random_sample_num)
            #GT ordinal relationship
            random_target_cos = torch.abs(torch.sum(random_targets_A * random_targets_B, dim=0))
            random_input_cos = torch.abs(torch.sum(random_inputs_A * random_inputs_B, dim=0))
            loss += torch.sum(torch.abs(random_target_cos - random_input_cos)) / (random_target_cos.shape[0] + 1e-8)

        if loss[0] != 0:
            return loss[0].float() / n
        else:
            return pred_depths.sum() * 0.0