Spaces:
Runtime error
Runtime error
File size: 16,208 Bytes
9afcee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
def get_surface_normalv2(xyz, patch_size=5):
"""
xyz: xyz coordinates
patch: [p1, p2, p3,
p4, p5, p6,
p7, p8, p9]
surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)]
return: normal [h, w, 3, b]
"""
b, h, w, c = xyz.shape
half_patch = patch_size // 2
xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device)
xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz
# xyz_left_top = xyz_pad[:, :h, :w, :] # p1
# xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9
# xyz_left_bottom = xyz_pad[:, -h:, :w, :] # p7
# xyz_right_top = xyz_pad[:, :h, -w:, :] # p3
# xyz_cross1 = xyz_left_top - xyz_right_bottom # p1p9
# xyz_cross2 = xyz_left_bottom - xyz_right_top # p7p3
xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :] # p4
xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :] # p6
xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :] # p2
xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :] # p8
xyz_horizon = xyz_left - xyz_right # p4p6
xyz_vertical = xyz_top - xyz_bottom # p2p8
xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :] # p4
xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :] # p6
xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :] # p2
xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :] # p8
xyz_horizon_in = xyz_left_in - xyz_right_in # p4p6
xyz_vertical_in = xyz_top_in - xyz_bottom_in # p2p8
n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3)
n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3)
# re-orient normals consistently
orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0
n_img_1[orient_mask] *= -1
orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0
n_img_2[orient_mask] *= -1
n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True))
n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8)
n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True))
n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8)
# average 2 norms
n_img_aver = n_img1_norm + n_img2_norm
n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True))
n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8)
# re-orient normals consistently
orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0
n_img_aver_norm[orient_mask] *= -1
n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0)) # [h, w, c, b]
# a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze()
# plt.imshow(np.abs(a), cmap='rainbow')
# plt.show()
return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0))
def init_image_coor(height, width):
x_row = np.arange(0, width)
x = np.tile(x_row, (height, 1))
x = x[np.newaxis, :, :]
x = x.astype(np.float32)
x = torch.from_numpy(x.copy()).cuda()
u_u0 = x - width/2.0
y_col = np.arange(0, height) # y_col = np.arange(0, height)
y = np.tile(y_col, (width, 1)).T
y = y[np.newaxis, :, :]
y = y.astype(np.float32)
y = torch.from_numpy(y.copy()).cuda()
v_v0 = y - height/2.0
return u_u0, v_v0
def depth_to_xyz(depth, focal_length):
b, c, h, w = depth.shape
u_u0, v_v0 = init_image_coor(h, w)
x = u_u0 * depth / focal_length
y = v_v0 * depth / focal_length
z = depth
pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c]
return pw
def surface_normal_from_depth(depth, focal_length, valid_mask=None):
# para depth: depth map, [b, c, h, w]
b, c, h, w = depth.shape
focal_length = focal_length[:, None, None, None]
depth_filter = torch.nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1)
depth_filter = torch.nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1)
xyz = depth_to_xyz(depth_filter, focal_length)
sn_batch = []
for i in range(b):
xyz_i = xyz[i, :][None, :, :, :]
normal = get_surface_normalv2(xyz_i)
sn_batch.append(normal)
sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1)) # [b, c, h, w]
mask_invalid = (~valid_mask).repeat(1, 3, 1, 1)
sn_batch[mask_invalid] = 0.0
return
###########
# EDGE-GUIDED SAMPLING
# input:
# inputs[i,:], targets[i, :], masks[i, :], edges_img[i], thetas_img[i], masks[i, :], h, w
# return:
# inputs_A, inputs_B, targets_A, targets_B, masks_A, masks_B
###########
def ind2sub(idx, cols):
r = idx / cols
c = idx - r * cols
return r, c
def sub2ind(r, c, cols):
idx = r * cols + c
return idx
def edgeGuidedSampling(inputs, targets, edges_img, thetas_img, masks, h, w):
# find edges
edges_max = edges_img.max()
edges_min = edges_img.min()
edges_mask = edges_img.ge(edges_max*0.1)
edges_loc = edges_mask.nonzero()
thetas_edge = torch.masked_select(thetas_img, edges_mask)
minlen = thetas_edge.size()[0]
# find anchor points (i.e, edge points)
sample_num = minlen
index_anchors = torch.randint(0, minlen, (sample_num,), dtype=torch.long).cuda()
theta_anchors = torch.gather(thetas_edge, 0, index_anchors)
row_anchors, col_anchors = ind2sub(edges_loc[index_anchors].squeeze(1), w)
## compute the coordinates of 4-points, distances are from [2, 30]
distance_matrix = torch.randint(3, 20, (4,sample_num)).cuda()
pos_or_neg = torch.ones(4,sample_num).cuda()
pos_or_neg[:2,:] = -pos_or_neg[:2,:]
distance_matrix = distance_matrix.float() * pos_or_neg
col = col_anchors.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.cos(theta_anchors).unsqueeze(0)).long()
row = row_anchors.unsqueeze(0).expand(4, sample_num).long() + torch.round(distance_matrix.double() * torch.sin(theta_anchors).unsqueeze(0)).long()
# constrain 0=<c<=w, 0<=r<=h
# Note: index should minus 1
col[col<0] = 0
col[col>w-1] = w-1
row[row<0] = 0
row[row>h-1] = h-1
# a-b, b-c, c-d
a = sub2ind(row[0,:], col[0,:], w)
b = sub2ind(row[1,:], col[1,:], w)
c = sub2ind(row[2,:], col[2,:], w)
d = sub2ind(row[3,:], col[3,:], w)
A = torch.cat((a,b,c), 0)
B = torch.cat((b,c,d), 0)
inputs_A = inputs[:, A]
inputs_B = inputs[:, B]
targets_A = targets[:, A]
targets_B = targets[:, B]
masks_A = torch.gather(masks, 0, A.long())
masks_B = torch.gather(masks, 0, B.long())
return inputs_A, inputs_B, targets_A, targets_B, masks_A, masks_B, sample_num, row, col
###########
# RANDOM SAMPLING
# input:
# inputs[i,:], targets[i, :], masks[i, :], self.mask_value, self.point_pairs
# return:
# inputs_A, inputs_B, targets_A, targets_B, consistent_masks_A, consistent_masks_B
###########
def randomSamplingNormal(inputs, targets, masks, sample_num):
# find A-B point pairs from predictions
num_effect_pixels = torch.sum(masks)
shuffle_effect_pixels = torch.randperm(num_effect_pixels).cuda()
valid_inputs = inputs[:, masks]
valid_targes = targets[:, masks]
inputs_A = valid_inputs[:, shuffle_effect_pixels[0:sample_num*2:2]]
inputs_B = valid_inputs[:, shuffle_effect_pixels[1:sample_num*2:2]]
# find corresponding pairs from GT
targets_A = valid_targes[:, shuffle_effect_pixels[0:sample_num*2:2]]
targets_B = valid_targes[:, shuffle_effect_pixels[1:sample_num*2:2]]
if inputs_A.shape[1] != inputs_B.shape[1]:
num_min = min(targets_A.shape[1], targets_B.shape[1])
inputs_A = inputs_A[:, :num_min]
inputs_B = inputs_B[:, :num_min]
targets_A = targets_A[:, :num_min]
targets_B = targets_B[:, :num_min]
return inputs_A, inputs_B, targets_A, targets_B
class EdgeguidedNormalRegressionLoss(nn.Module):
def __init__(self, point_pairs=10000, cos_theta1=0.3, cos_theta2=0.95, cos_theta3=0.5, cos_theta4=0.86, mask_value=-1e-8, max_threshold=10.1):
super(EdgeguidedNormalRegressionLoss, self).__init__()
self.point_pairs = point_pairs # number of point pairs
self.mask_value = mask_value
self.max_threshold = max_threshold
self.cos_theta1 = cos_theta1 # 75 degree
self.cos_theta2 = cos_theta2 # 10 degree
self.cos_theta3 = cos_theta3 # 60 degree
self.cos_theta4 = cos_theta4 # 30 degree
self.kernel = torch.tensor(np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=np.float32), requires_grad=False)[None, None, :, :].cuda()
def scale_shift_pred_depth(self, pred, gt):
b, c, h, w = pred.shape
mask = (gt > self.mask_value) & (gt < self.max_threshold) # [b, c, h, w]
EPS = 1e-6 * torch.eye(2, dtype=pred.dtype, device=pred.device)
scale_shift_batch = []
ones_img = torch.ones((1, h, w), dtype=pred.dtype, device=pred.device)
for i in range(b):
mask_i = mask[i, ...]
pred_valid_i = pred[i, ...][mask_i]
ones_i = ones_img[mask_i]
pred_valid_ones_i = torch.stack((pred_valid_i, ones_i), dim=0) # [c+1, n]
A_i = torch.matmul(pred_valid_ones_i, pred_valid_ones_i.permute(1, 0)) # [2, 2]
A_inverse = torch.inverse(A_i + EPS)
gt_i = gt[i, ...][mask_i]
B_i = torch.matmul(pred_valid_ones_i, gt_i)[:, None] # [2, 1]
scale_shift_i = torch.matmul(A_inverse, B_i) # [2, 1]
scale_shift_batch.append(scale_shift_i)
scale_shift_batch = torch.stack(scale_shift_batch, dim=0) # [b, 2, 1]
ones = torch.ones_like(pred)
pred_ones = torch.cat((pred, ones), dim=1) # [b, 2, h, w]
pred_scale_shift = torch.matmul(pred_ones.permute(0, 2, 3, 1).reshape(b, h * w, 2), scale_shift_batch) # [b, h*w, 1]
pred_scale_shift = pred_scale_shift.permute(0, 2, 1).reshape((b, c, h, w))
return pred_scale_shift
def getEdge(self, images):
n,c,h,w = images.size()
a = torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).cuda().view((1,1,3,3)).repeat(1, 1, 1, 1)
b = torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).cuda().view((1,1,3,3)).repeat(1, 1, 1, 1)
if c == 3:
gradient_x = F.conv2d(images[:,0,:,:].unsqueeze(1), a)
gradient_y = F.conv2d(images[:,0,:,:].unsqueeze(1), b)
else:
gradient_x = F.conv2d(images, a)
gradient_y = F.conv2d(images, b)
edges = torch.sqrt(torch.pow(gradient_x,2)+ torch.pow(gradient_y,2))
edges = F.pad(edges, (1,1,1,1), "constant", 0)
thetas = torch.atan2(gradient_y, gradient_x)
thetas = F.pad(thetas, (1,1,1,1), "constant", 0)
return edges, thetas
def getNormalEdge(self, normals):
n,c,h,w = normals.size()
a = torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).cuda().view((1,1,3,3)).repeat(3, 1, 1, 1)
b = torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).cuda().view((1,1,3,3)).repeat(3, 1, 1, 1)
gradient_x = torch.abs(F.conv2d(normals, a, groups=c))
gradient_y = torch.abs(F.conv2d(normals, b, groups=c))
gradient_x = gradient_x.mean(dim=1, keepdim=True)
gradient_y = gradient_y.mean(dim=1, keepdim=True)
edges = torch.sqrt(torch.pow(gradient_x,2)+ torch.pow(gradient_y,2))
edges = F.pad(edges, (1,1,1,1), "constant", 0)
thetas = torch.atan2(gradient_y, gradient_x)
thetas = F.pad(thetas, (1,1,1,1), "constant", 0)
return edges, thetas
def forward(self, pred_depths, gt_depths, images, focal_length):
"""
inputs and targets: surface normal image
images: rgb images
"""
masks = gt_depths > self.mask_value
#pred_depths_ss = self.scale_shift_pred_depth(pred_depths, gt_depths)
inputs = surface_normal_from_depth(pred_depths, focal_length, valid_mask=masks)
targets = surface_normal_from_depth(gt_depths, focal_length, valid_mask=masks)
# find edges from RGB
edges_img, thetas_img = self.getEdge(images)
# find edges from normals
edges_normal, thetas_normal = self.getNormalEdge(targets)
mask_img_border = torch.ones_like(edges_normal) # normals on the borders
mask_img_border[:, :, 5:-5, 5:-5] = 0
edges_normal[mask_img_border.bool()] = 0
# find edges from depth
edges_depth, _ = self.getEdge(gt_depths)
edges_depth_mask = edges_depth.ge(edges_depth.max() * 0.1)
edges_mask_dilate = torch.clamp(torch.nn.functional.conv2d(edges_depth_mask.float(), self.kernel, padding=(1, 1)), 0,
1).bool()
edges_normal[edges_mask_dilate] = 0
edges_img[edges_mask_dilate] = 0
#=============================
n,c,h,w = targets.size()
inputs = inputs.contiguous().view(n, c, -1).double()
targets = targets.contiguous().view(n, c, -1).double()
masks = masks.contiguous().view(n, -1)
edges_img = edges_img.contiguous().view(n, -1).double()
thetas_img = thetas_img.contiguous().view(n, -1).double()
edges_normal = edges_normal.view(n, -1).double()
thetas_normal = thetas_normal.view(n, -1).double()
# initialization
loss = torch.DoubleTensor([0.0]).cuda()
for i in range(n):
# Edge-Guided sampling
inputs_A, inputs_B, targets_A, targets_B, masks_A, masks_B, sample_num, row_img, col_img = edgeGuidedSampling(inputs[i,:], targets[i, :], edges_img[i], thetas_img[i], masks[i, :], h, w)
normal_inputs_A, normal_inputs_B, normal_targets_A, normal_targets_B, normal_masks_A, normal_masks_B, normal_sample_num, row_normal, col_normal = edgeGuidedSampling(inputs[i,:], targets[i, :], edges_normal[i], thetas_normal[i], masks[i, :], h, w)
# Combine EGS + EGNS
inputs_A = torch.cat((inputs_A, normal_inputs_A), 1)
inputs_B = torch.cat((inputs_B, normal_inputs_B), 1)
targets_A = torch.cat((targets_A, normal_targets_A), 1)
targets_B = torch.cat((targets_B, normal_targets_B), 1)
masks_A = torch.cat((masks_A, normal_masks_A), 0)
masks_B = torch.cat((masks_B, normal_masks_B), 0)
# consider forward-backward consistency checking, i.e, only compute losses of point pairs with valid GT
consistency_mask = masks_A & masks_B
#GT ordinal relationship
target_cos = torch.abs(torch.sum(targets_A * targets_B, dim=0))
input_cos = torch.abs(torch.sum(inputs_A * inputs_B, dim=0))
# ranking regression
#loss += torch.mean(torch.abs(target_cos[consistency_mask] - input_cos[consistency_mask]))
# Ranking for samples
mask_cos75 = target_cos < self.cos_theta1
mask_cos10 = target_cos > self.cos_theta2
# Regression for samples
loss += torch.sum(torch.abs(target_cos[mask_cos75 & consistency_mask] - input_cos[mask_cos75 & consistency_mask])) / (torch.sum(mask_cos75 & consistency_mask)+1e-8)
loss += torch.sum(torch.abs(target_cos[mask_cos10 & consistency_mask] - input_cos[mask_cos10 & consistency_mask])) / (torch.sum(mask_cos10 & consistency_mask)+1e-8)
# Random Sampling regression
random_sample_num = torch.sum(mask_cos10 & consistency_mask) + torch.sum(torch.sum(mask_cos75 & consistency_mask))
random_inputs_A, random_inputs_B, random_targets_A, random_targets_B = randomSamplingNormal(inputs[i,:], targets[i, :], masks[i, :], random_sample_num)
#GT ordinal relationship
random_target_cos = torch.abs(torch.sum(random_targets_A * random_targets_B, dim=0))
random_input_cos = torch.abs(torch.sum(random_inputs_A * random_inputs_B, dim=0))
loss += torch.sum(torch.abs(random_target_cos - random_input_cos)) / (random_target_cos.shape[0] + 1e-8)
if loss[0] != 0:
return loss[0].float() / n
else:
return pred_depths.sum() * 0.0
|