Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,435 Bytes
346ff07 db7b183 9fa3d89 f1653dd 9fa3d89 20b4d0d 9fa3d89 f1653dd 9fa3d89 a2dab9e f1653dd 9fa3d89 db7b183 9fa3d89 db7b183 9fa3d89 db7b183 a2dab9e f1653dd 9fa3d89 db7b183 9fa3d89 db7b183 9fa3d89 db7b183 20b4d0d 15341f5 82a8364 15341f5 82a8364 15341f5 82a8364 a2dab9e 9fa3d89 a2dab9e 15341f5 9fa3d89 15341f5 9fa3d89 db7b183 9fa3d89 db7b183 cce2948 ce60be5 9fa3d89 0bc0fa2 2621850 1105730 cce2948 db7b183 9fa3d89 db7b183 9fa3d89 cce2948 2621850 cce2948 9fa3d89 82a8364 9fa3d89 15341f5 9fa3d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import spaces
import gradio as gr
import torch
import numpy as np
from ola_vlm.constants import DEFAULT_IMAGE_TOKEN
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from ola_vlm.conversation import conv_templates, SeparatorStyle
from ola_vlm.model.builder import load_pretrained_model
from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
from diffusers import StableUnCLIPImg2ImgPipeline, DPMSolverMultistepScheduler
from transformers import OneFormerProcessor
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead
from ola_vlm.ola_utils import visualize_oneformer_masks_on_image, oneformer_prepare_panoptic_instance_prediction
import matplotlib
from PIL import Image, ImageDraw, ImageFont
import argparse
import math
from transformers import TextIteratorStreamer
from threading import Thread
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
def make_grid(pil_images, layer_indices=None):
new_images = []
new_captions = []
# Resize images and prepare captions
for i, pil_image in enumerate(pil_images):
pil_image = pil_image.resize((256, 256))
new_images.append(pil_image)
if layer_indices is not None:
new_captions.append(f"Layer: {layer_indices[i]}")
else:
new_captions.append(f"Layer: {i+1}")
images = new_images
captions = new_captions
width, height = images[0].size
font_size = 18
# Calculate the number of rows and columns for the grid
images_per_row = min(len(images), 4) # Max 4 images per row
row_count = math.ceil(len(images) / images_per_row)
total_width = width * images_per_row
total_height = height * row_count
# Create a new blank image
new_image = Image.new("RGB", (total_width, total_height), "white")
draw = ImageDraw.Draw(new_image)
# Load a default font
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
except:
font = ImageFont.load_default()
# Place images and captions in the grid
for i, (image, caption) in enumerate(zip(images, captions)):
row = i // images_per_row
col = i % images_per_row
x_offset = col * width
y_offset = row * height
# Paste the image
new_image.paste(image, (x_offset, y_offset))
# Calculate text and background positions
text_width, text_height = draw.textsize(caption, font=font)
text_position = (x_offset + 10, y_offset + height - text_height - 10)
background_position = (
text_position[0] - 5,
text_position[1] - 5,
text_position[0] + text_width + 5,
text_position[1] + text_height + 5,
)
# Draw background rectangle and text
draw.rectangle(background_position, fill="white", outline="black")
draw.text(text_position, caption, fill="black", font=font)
return new_image
def reload_from_ckpt(model_path, model, cache_dir=None):
import os
from safetensors import safe_open
from huggingface_hub import hf_hub_download, list_repo_files
state_dict = {}
# Check if the path is a local directory or HF Hub model
if os.path.isdir(model_path):
# Local directory: Load safetensors files
safetensors_paths = [os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.safetensors')]
else:
# HF Hub: Get list of safetensors files and download them
repo_files = list_repo_files(model_path)
safetensors_paths = [
hf_hub_download(model_path, file_name, cache_dir=cache_dir)
for file_name in repo_files if file_name.endswith('.safetensors')
]
# Load safetensors files into the state_dict
for path in safetensors_paths:
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
# Load the state dict into the model
model.load_state_dict(state_dict, strict=False)
return model
# os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp'
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
argparser = argparse.ArgumentParser()
argparser.add_argument("--server_name", default="0.0.0.0", type=str)
argparser.add_argument("--port", default="6324", type=str)
argparser.add_argument("--model-path", default="shi-labs/pretrain_dsg_OLA-VLM-CLIP-ViT-Llama3-8b", type=str)
argparser.add_argument("--model-base", type=str, default=None)
argparser.add_argument("--num-gpus", type=int, default=1)
argparser.add_argument("--conv-mode", type=str, default="llava_llama_3")
argparser.add_argument("--temperature", type=float, default=0.2)
argparser.add_argument("--max-new-tokens", type=int, default=512)
argparser.add_argument("--num_frames", type=int, default=16)
argparser.add_argument("--load-8bit", action="store_true")
argparser.add_argument("--load-4bit", action="store_true")
argparser.add_argument("--debug", action="store_true")
args = argparser.parse_args()
model_path = args.model_path
conv_mode = args.conv_mode
filt_invalid="cut"
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
model = reload_from_ckpt("shi-labs/OLA-VLM-CLIP-ViT-Llama3-8b", model)
our_chatbot = None
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
oneformer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
oneformer = OneFormerHead.from_pretrained("shi-labs/oneformer_coco_swin_large")
gen_layer_indices = model.config.image_gen["img_layer_indices"].split("-")
seg_layer_indices = model.config.image_seg["seg_layer_indices"].split("-")
depth_layer_indices = model.config.image_depth["depth_layer_indices"].split("-")
def clear_history():
state =conv_templates[conv_mode].copy()
return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5
def add_text(state, imagebox, textbox, image_process_mode):
if state is None:
state = conv_templates[conv_mode].copy()
if imagebox is not None:
textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
image = Image.open(imagebox).convert('RGB')
if imagebox is not None:
textbox = (textbox, image, image_process_mode)
state.append_message(state.roles[0], textbox)
state.append_message(state.roles[1], None)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def get_gen_images(out, pipe):
pipe = pipe.to("cuda")
img_embeds = out.image_embs
if len(img_embeds) == 0:
return None
images = []
for img_embed in img_embeds:
gen_image = pipe(image_embeds=img_embed.squeeze(1),
num_inference_steps=25,
).images[0]
images.append(gen_image)
grid_image = make_grid(images, gen_layer_indices)
return grid_image
def get_depth_images(out, org_size):
depth_preds = out.depth_preds
if len(depth_preds) == 0:
return None
depths = []
for i, depth_pred in enumerate(depth_preds):
depth = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0
depth = depth.squeeze(0).cpu().numpy()
depth = depth.astype(np.uint8)
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
depth = Image.fromarray(depth)
depth = depth.resize(org_size)
depths.append(depth)
grid_image = make_grid(depths, depth_layer_indices)
return grid_image
def get_seg_images(out, image, oneformer):
oneformer = oneformer.to("cuda")
seg_embs = out.seg_embs
if len(seg_embs) == 0:
return None
seg_preds = []
inputs = oneformer_processor(image, ["semantic"], return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(out.logits.device, out.logits.dtype)
inputs["task_inputs"] = inputs["task_inputs"].to(out.logits.device, out.logits.dtype)
backbone_features = oneformer.get_backbone_feats(**inputs)
for i, seg_emb in enumerate(seg_embs):
pred = oneformer.get_masks(**inputs, backbone_last_feature=seg_emb.float(), all_backbone_features=backbone_features)
pred = oneformer_processor.post_process_panoptic_segmentation(
pred, target_sizes=[image.size[::-1]]
)[0]
pred_msk, pred_cls = oneformer_prepare_panoptic_instance_prediction(**pred, oneformer=oneformer)
pred = visualize_oneformer_masks_on_image(image, pred_msk, pred_cls)
seg_preds.append(pred)
grid_image = make_grid(seg_preds, seg_layer_indices)
return grid_image
def delete_text(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def regenerate(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
@spaces.GPU
def get_interm_outs(state):
prompt = state.get_prompt()
images = state.get_images(return_pil=True)
#prompt, image_args = process_image(prompt, images)
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
#images = [load_image_from_base64(image) for image in images]
image_sizes = [image.size for image in images]
inp_images = process_images(images, image_processor, model.config)
if type(inp_images) is list:
inp_images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
inp_images = inp_images.to(model.device, dtype=torch.float16)
else:
inp_images = None
image_sizes = None
image_args = {"images": inp_images, "image_sizes": image_sizes}
else:
inp_images = None
image_args = {}
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
interm_outs = model.get_visual_interpretations(
input_ids,
**image_args
)
depth_outs = get_depth_images(interm_outs, image_sizes[0])
seg_outs = get_seg_images(interm_outs, images[0], oneformer)
gen_outs = get_gen_images(interm_outs, pipe)
return depth_outs, seg_outs, gen_outs
@spaces.GPU
def generate(state, temperature, top_p, max_output_tokens):
prompt = state.get_prompt()
images = state.get_images(return_pil=True)
#prompt, image_args = process_image(prompt, images)
ori_prompt = prompt
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
#images = [load_image_from_base64(image) for image in images]
image_sizes = [image.size for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
images = images.to(model.device, dtype=torch.float16)
else:
images = None
image_sizes = None
image_args = {"images": images, "image_sizes": image_sizes}
else:
images = None
image_args = {}
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = max_output_tokens
do_sample = True if temperature > 0.001 else False
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
**image_args
))
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
state.messages[-1][-1] = generated_text
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
torch.cuda.empty_cache()
txt = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter.",
container=False,
)
title = "<h1 style='margin-bottom: -10px; text-align: center'>OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation</h1>"
description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain</a>   <a href='https://zyang-ur.github.io/' style='text-decoration:none' target='_blank'>Zhengyuan Yang</a>   <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi<sup>*</sup></a>   <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Jianfeng Gao<sup>*</sup></a>   <a href='https://jwyang.github.io/' style='text-decoration:none' target='_blank'>Jianwei Yang<sup>*</sup></a></p>" \
+ "<p style='font-size: 12px; margin: 5px; font-weight: w300; text-align: center'><sup>*</sup>Equal Advising</p>" \
+ "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/ola_vlm/' target='_blank'>Project Page</a> | <a href='https://youtu.be/' target='_blank'>Video</a> | <a href='https://arxiv.org/abs/2412.09585' target='_blank'>ArXiv</a> | <a href='https://github.com/SHI-Labs/OLA-VLM' target='_blank'>Github</a></p>" \
+ "<p style='text-align: left; font-size: 16px; margin: 5px; font-weight: w300;'>OLA-VLM introduces a new approach to distilling vision knowledge into the hidden representations of LLMs, utilizing target visual representations to advance visual perception in multimodal LLMs. In the demo, along with the standard VQA setting, you can also visualize the intermediate representations from selected layers in OLA-VLM by clicking on the <code>β¨ Visualize Intermediate Representations</code> button! Note that our demo only supports single image input currently.</p>" \
+ "<ul style='text-align: left; font-size: 16px; margin: 5px; font-weight: w300; padding: 0;'> \
<li><b>depth</b>: Visualizes the depth information in the representations using the decoder from the <a href='https://github.com/DepthAnything/Depth-Anything-V2' target='_blank'>Depth-Anything-v2 model</a>.</li> \
<li><b>seg</b>: Visualizes the segmentation information in the representations using the decoder from the <a href='https://github.com/SHI-Labs/OneFormer' target='_blank'>OneFormer model</a>.</li> \
<li><b>gen</b>: Visualizes the general information of the representations using the <a href='https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip' target='_blank'>SD-2.1-unCLIP</a>. Note that we use representations as a condition to the model, resulting in an image variation output due to the nature of unCLIP.</li> \
</ul>"
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="OLA-VLM", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=4):
imagebox = gr.Image(label="Input Image", type="filepath")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
# with gr.Accordion("Parameters", open=False) as parameter_row:
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="OLA-VLM",
height=300,
layout="panel",
)
textbox.render()
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=False, visible=False)
downvote_btn = gr.Button(value="π Downvote", interactive=False, visible=False)
flag_btn = gr.Button(value="β οΈ Flag", interactive=False, visible=False)
#stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
submit_btn = gr.Button(value="Send", variant="primary")
# with gr.Accordion("Representations from selected layers of the LLM (expects only a single image input)", open=False) as interm_out:
inter_vis_btn = gr.Button(value="β¨ Visualize Intermediate Representations")
with gr.Row():
depth_box = gr.Image(label="depth", type="pil", visible=True)
seg_box = gr.Image(label="seg", type="pil", visible=True)
gen_box = gr.Image(label="gen", type="pil", visible=True)
gr.Examples(examples=[
[f"assets/cars.jpg", "Which car is in front: the blue or the brown one?"],
[f"assets/pb.jpg", "Where is the bulding located with respect to the man?"],
], inputs=[imagebox, textbox], cache_examples=False)
# gr.Markdown(tos_markdown)
# gr.Markdown(learn_more_markdown)
# url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
inter_vis_btn.click(
get_interm_outs,
[state],
[depth_box, seg_box, gen_box],
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox, depth_box, gen_box, seg_box] + btn_list,
queue=False
)
regenerate_btn.click(
delete_text,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
textbox.submit(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
submit_btn.click(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
demo.queue(
status_update_rate=10,
api_open=False
).launch(share=False)
demo.queue() |