File size: 26,713 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers.generation.utils import GenerateOutput

from ola_vlm.model.aux_heads import GenHead, DepthHead, DAv2_Head, TaskTokenGenHead, TaskTokenDepthHead
from ola_vlm.model.aux_heads.depth_anything_v2.dpt import DepthAnythingV2
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead, OneFormerSegHead, OneFormerTaskTokenSegHead

from transformers import OneFormerProcessor

from diffusers import (
    DPMSolverMultistepScheduler,
    StableUnCLIPImg2ImgPipeline,
)

import torch.distributed as dist
try:
    import wandb
except:
    pass
import os
import matplotlib
from .base_lm import BaseCausalLM
from tqdm import tqdm

from ola_vlm.ola_utils import *


class BaseOLA_VLM(BaseCausalLM):

    def __init__(self, config):
        super(BaseCausalLM, self).__init__(config)
        self.steps = 0
        self.config = config

        if hasattr(config, "image_gen"):
            self.init_heads(config)

        try:
            if dist.get_rank() == 0:
                wandb.init(project=os.environ['WANDB_PROJECT'], name=f"{os.environ['WANDB_NAME']}")
        except:
            pass

    def get_model(self):
        return self.model

    def init_target_models(self, config):
        if hasattr(config, "image_gen") and "gen" in self.mode:
            if not os.path.exists(config.image_generator):
                config.image_generator = "stabilityai/stable-diffusion-2-1-unclip"
            self.pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(config.image_generator, torch_dtype=torch.float16, variant="fp16")
            self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
            for p in self.pipe.image_encoder.parameters():
                p.requires_grad = False
            try:
                self.pipe = self.pipe.to("cuda")
            except:
                pass

        if hasattr(config, "image_depth") and "depth" in self.mode:
            dav2_cfg = {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}
            self.dav2_backbone = DepthAnythingV2(**dav2_cfg)

            if not os.path.exists(config.depth_estimator):
                url = "https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true"
                local_model_path = "depth_anything_v2_vitl.pth"
                if not os.path.exists(local_model_path):
                    os.system(f"wget -O {local_model_path} {url}")
                config.depth_estimator = local_model_path

            config.depth_estimator = local_model_path
            self.dav2_backbone.load_state_dict(torch.load(config.depth_estimator, map_location='cpu'))
            for p in self.dav2_backbone.parameters():
                p.requires_grad = False

        if hasattr(config, "image_seg") and "seg" in self.mode:
            if not os.path.exists(config.image_segmentor):
                config.image_segmentor = "oneformer/oneformer_coco_swin_large"
            self.oneformer_processor = OneFormerProcessor.from_pretrained(config.image_segmentor)
            self.oneformer = OneFormerHead.from_pretrained(config.image_segmentor)
            for p in self.oneformer.parameters():
                p.requires_grad = False
            try:
                self.oneformer = self.oneformer.to("cuda")
            except:
                pass
    
    def _get_layer_loss_weight(self, config, prefix):
        layer_indices = config[f"{prefix}_layer_indices"]
        layer_indices = layer_indices.split("-")
        layer_indices = [int(i) - 1 for i in layer_indices]
        loss_weight = config[f"{prefix}_loss_weight"]
        return layer_indices, loss_weight
    
    def init_heads(self, config):
        self.mode = getattr(config, "aux_mode", "gen-depth-seg")
        self.pass_text_to_aux_head = getattr(config, "pass_text_to_aux", True)
        self.use_ce = getattr(config, "use_ce", False)
        self.contrastive_loss_weight = config.contrastive_loss_weight
        num_task_tokens = config.num_task_tokens

        if hasattr(config, "image_gen") and "gen" in self.mode:            
            self.img_layer_indices, self.img_gen_loss_weight = self._get_layer_loss_weight(config.image_gen, "img")
            if getattr(config, "use_contrastive", True):
                self.gen_logit_scale = nn.Parameter(torch.tensor(2.0))
            else:
                self.gen_logit_scale = None
            
            self.image_gen_heads = nn.ModuleList([
                TaskTokenGenHead(config.image_gen, llm_hidden_size=config.hidden_size) if num_task_tokens > 0 else GenHead(proj_config=config.image_gen, llm_hidden_size=config.hidden_size)
                for _ in self.img_layer_indices
            ])

        if hasattr(config, "image_depth") and "depth" in self.mode:
            self.depth_layer_indices, self.img_depth_loss_weight = self._get_layer_loss_weight(config.image_depth, "depth")
            self.img_depth_loss_weight = config.image_depth["depth_loss_weight"]
            
            if getattr(config, "use_contrastive", True):
                self.depth_logit_scale = nn.Parameter(torch.tensor(2.0))
            else:
                self.depth_logit_scale = None

            self.use_intermediate_depth = config.image_depth.get("use_intermediate_depth", True)

            self.image_depth_heads = nn.ModuleList([
                TaskTokenDepthHead(proj_config=config.image_depth, llm_hidden_size=config.hidden_size, use_intermediate_depth=self.use_intermediate_depth) if num_task_tokens > 0 else DepthHead(proj_config=config.image_depth, llm_hidden_size=config.hidden_size, use_intermediate_depth=self.use_intermediate_depth)
                for _ in self.depth_layer_indices
            ])
            
            self.da_v2_head = DAv2_Head()

            if not os.path.exists(config.depth_estimator):
                url = "https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true"
                local_model_path = "depth_anything_v2_vitl.pth"
                if not os.path.exists(local_model_path):
                    os.system(f"wget -O {local_model_path} {url}")
                config.depth_estimator = local_model_path

            self.da_v2_head.load_state_dict(torch.load(config.depth_estimator), strict=False)
            
            for p in self.da_v2_head.parameters():
                p.requires_grad = False

        if hasattr(config, "image_seg") and "seg" in self.mode:
            self.seg_layer_indices, self.img_seg_loss_weight = self._get_layer_loss_weight(config.image_seg, "seg")

            self.seg_teacher = config.image_seg.get("seg_teacher", "sam")

            assert self.seg_teacher in ["sam", "oneformer"]

            if getattr(config, "use_contrastive", True):
                self.seg_logit_scale = nn.Parameter(torch.tensor(2.0))
            else:
                self.seg_logit_scale = None

            self.image_seg_heads = nn.ModuleList([
                OneFormerTaskTokenSegHead(config.image_seg, llm_hidden_size=config.hidden_size) if num_task_tokens > 0 else OneFormerSegHead(config.image_seg, llm_hidden_size=config.hidden_size)
                for _ in self.seg_layer_indices
            ])
    

    def log_gen(self, img_embeds, pil_images, layer_idx, is_train=False):
        pipe = self.pipe.to("cuda")

        images = []

        for img_embed in img_embeds:
            image = pipe(image_embeds=img_embed.float().detach(),
                    num_inference_steps=25,
                ).images[0]
            images.append(image)
        
        if not is_train:
            return images

        n = len(images)
        c = min(n, 16)
        r = n // c
        images = images[:c*r]
        image_grid = make_grid(images, pil_images)
        
        wandb.log({
            f"val_gen_images/step_{self.steps}": wandb.Image(image_grid, caption=f"Layer-{layer_idx}")
        })
  
    def log_depth(self, depth_preds, layer_idx, depth_targets=None, is_train=False):
        cmap = matplotlib.colormaps.get_cmap('Spectral_r')
        depth_preds = depth_preds.float().detach()
        def _visualize_depth(depth):
            depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
            depth = depth.cpu().numpy().astype(np.uint8)
            colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
            return Image.fromarray(colored_depth)

        pred_depths, gt_depths = [], []

        if depth_targets is None:
            depth_targets = [None] * len(depth_preds)

        for pred, target in tqdm(zip(depth_preds, depth_targets), desc="Visualizing Depth..."):
            if target is not None:
                gt = _visualize_depth(target.float())
                gt_depths.append(gt)

            pred = _visualize_depth(pred)
            pred_depths.append(pred)
        
        if not is_train:
            return pred_depths

        n = len(pred_depths)
        c = min(n, 16)
        r = n // c
        pred_depths = pred_depths[:c*r]
        gt_depths = gt_depths[:c*r]
        masks_grid = make_grid(pred_depths, gt_depths)
        
        wandb.log({
            f"val_depth_images/step_{self.steps}": wandb.Image(masks_grid, caption=f"Layer-{layer_idx}")
        })
    
    def log_seg(self, seg_embeds, pil_images, layer_idx, seg_targets=None, is_train=False):
        def _oneformer_prepare_panoptic_instance_prediction(
            segmentation: torch.Tensor, segments_info: dict
        ):
            masks = []
            classes = []

            for segment in segments_info:
                id = segment["id"]
                label_id = segment["label_id"]
                label = self.oneformer.config.id2label[label_id]
                mask = segmentation == id
                masks.append(mask.float())
                classes.append(label)

            return masks, classes
        
        pred_masks, gt_masks = [], []

        seg_embeds = seg_embeds.detach()

        if seg_targets is None:
            seg_targets = [None] * len(seg_embeds)

        for emb, target, img in tqdm(zip(seg_embeds, seg_targets, pil_images), desc=f"Predicting Segmentation Map..."):
            with torch.no_grad():
                inputs = self.oneformer_processor(img, ["panoptic"], return_tensors="pt")
                inputs["pixel_values"] = inputs["pixel_values"].to(emb.device, emb.dtype)
                inputs["task_inputs"] = inputs["task_inputs"].to(emb.device, emb.dtype)
                gt = self.oneformer.get_masks(**inputs, backbone_last_feature=target.unsqueeze(0))
                gt = self.oneformer_processor.post_process_panoptic_segmentation(
                                        gt, target_sizes=[img.size[::-1]]
                                    )[0]
                gt_msk, gt_cls = _oneformer_prepare_panoptic_instance_prediction(**gt)
                gt = visualize_oneformer_masks_on_image(img, gt_msk, gt_cls)

                pred = self.oneformer.get_masks(**inputs, backbone_last_feature=emb.unsqueeze(0))
                pred = self.oneformer_processor.post_process_panoptic_segmentation(
                                        pred, target_sizes=[img.size[::-1]]
                                    )[0]
                pred_msk, pred_cls = _oneformer_prepare_panoptic_instance_prediction(**pred)
                pred = visualize_oneformer_masks_on_image(img, pred_msk, pred_cls)

            gt_masks.append(gt)
            pred_masks.append(pred)

        n = len(pred_masks)
        c = min(n, 16)
        r = n // c
        pred_masks = pred_masks[:c*r]
        gt_masks = gt_masks[:c*r]
        masks_grid = make_grid(pred_masks, gt_masks)
        
        wandb.log({
            f"val_seg_images/step_{self.steps}": wandb.Image(masks_grid, caption=f"Layer-{layer_idx}")
        })
    

    def _emb_loss(self, emb_preds, emb_mask, emb_targets, logit_scale):
        emb_targets = emb_targets.to(emb_preds.dtype).to(emb_preds.device)

        if emb_targets.shape[0] != emb_preds.shape[0]:
            repeat_factor = emb_preds.shape[0] // emb_targets.shape[0]
            emb_targets = emb_targets.repeat(repeat_factor, 1, 1)
            emb_mask = emb_mask.repeat(repeat_factor, 1, 1)

            if emb_targets.shape[0] != emb_preds.shape[0]:
                emb_targets = emb_targets[:emb_preds.shape[0]]
                emb_mask = emb_mask[:emb_preds.shape[0]]

        if emb_preds.ndim == 3:
            emb_mask = emb_mask.view(emb_preds.shape[0], 1, 1)
        else:
            emb_mask = emb_mask.view(emb_preds.shape[0], 1, 1, 1)

        sl1_loss = F.smooth_l1_loss(
            emb_preds.float(), emb_targets.float(), reduction="none"
        )

        if logit_scale is not None:
            contrastive_loss = calculate_contrastive_loss(emb_preds, emb_targets, logit_scale)
        else:
            contrastive_loss = 0

        sl1_loss = (sl1_loss * emb_mask.float()).mean()
        contrastive_loss = (self.contrastive_loss_weight * contrastive_loss * emb_mask.float()).mean()
        
        emb_loss = sl1_loss + contrastive_loss

        return emb_loss, sl1_loss, contrastive_loss


    def _get_gen_feats(self, pil_images, device):
        gen_feats = []
        for img in pil_images:
            with torch.no_grad():
                clip_ims = self.pipe.feature_extractor(images=img, return_tensors="pt").pixel_values.to(device)
                feat = self.pipe.image_encoder(clip_ims).image_embeds
                gen_feats.append(feat)

        gen_feats = torch.stack(gen_feats, dim=0)
        return gen_feats
    
    def _forward_gen(self, gen_preds, layer_index, pil_images, gen_mask, gen_targets):        
        gen_loss, gen_sl1_loss, gen_cont_loss = self._emb_loss(gen_preds, gen_mask, gen_targets, self.gen_logit_scale)

        if dist.get_rank() == 0:
            if self.steps % 4000 == 0:
                try:
                    self.log_gen(gen_preds.detach(), pil_images, layer_index, is_train=True)
                except:
                    pass
    
        return gen_loss, gen_cont_loss, gen_sl1_loss
    

    def _get_dav2_feats(self, pil_images, device):
        dav2_gts = []
        depth_targets = [[]]
        for img in pil_images:
            img = img.resize((336, 336))
            img = np.array(img)
            with torch.no_grad():
                feat = self.dav2_backbone.infer_image(img, is_dsg=True)
                ft_gt = (feat[0][0] + feat[1][0] + feat[2][0] + feat[3][0]) / 4
                depth_gts = self.da_v2_head([(ft_gt, None)] * 4)
                depth_targets[0].append(ft_gt)
            min_val = depth_gts.amin(dim=(1, 2), keepdim=True)
            max_val = depth_gts.amax(dim=(1, 2), keepdim=True)
            depth_gts = (depth_gts - min_val) / (max_val - min_val)
            dav2_gts.append(depth_gts.to(device))
        dav2_gts = torch.stack(dav2_gts, dim=0).squeeze(1)
        for i in range(len(depth_targets)):
            depth_targets[i] = (torch.stack(depth_targets[i], dim=0).squeeze(1), None)
        return depth_targets, dav2_gts
    
    def _forward_depth(self, all_depth_feats, layer_index, depth_mask, all_depth_targets, depth_pred_maps, depth_gts):                

        depth_feats, depth_targets = all_depth_feats[0][0], all_depth_targets[0][0]
        depth_loss, sl1_loss, cont_loss = self._emb_loss(depth_feats, depth_mask, depth_targets, self.depth_logit_scale)

        if dist.get_rank() == 0:
            if self.steps % 1000 == 0:
                try:
                    self.log_depth(depth_pred_maps.detach(), layer_index, depth_gts, is_train=True)
                except:
                    pass

        return depth_loss, sl1_loss, cont_loss


    def _get_seg_targets(self, pil_images, seg_preds):
        def _get_feats(img):
            img = img.resize((768, 768))
            inputs = self.oneformer_processor(img, ["panoptic"], return_tensors="pt")
            inputs["pixel_values"] = inputs["pixel_values"].to(seg_preds.device, seg_preds.dtype)
            with torch.no_grad():
                feats = self.oneformer.forward_features(**inputs)
            return feats

        seg_targets = []
        for img in pil_images:
            feat = _get_feats(img)
            seg_targets.append(feat)

        seg_targets = torch.stack(seg_targets, dim=0).squeeze(1)
        return seg_targets

    def _forward_seg(self, seg_preds, layer_index, pil_images, seg_targets, seg_mask):
        
        seg_loss, sl1_loss, cont_loss = self._emb_loss(seg_preds, seg_mask, seg_targets, self.seg_logit_scale)

        if dist.get_rank() == 0:
            if self.steps % 1000 == 0:
                try:
                    self.log_seg(seg_preds.detach(), pil_images, layer_index, seg_targets, is_train=True)
                except:
                    pass
    
        return seg_loss, sl1_loss, cont_loss


    def forward_emb_predictor(self, layer_states, idx, i, task, heads, special_tokens):
        task_idx = self.token_order.index(task)
        task_start_idx =  self.NUM_SYS_TOKENS + 576 + (self.num_task_tokens * task_idx)
        task_end_idx = task_start_idx + self.num_task_tokens
        end_idx = self.NUM_SYS_TOKENS + 576 + (self.num_task_tokens * len(self.token_order))

        inp_tokens = layer_states[idx][:, :self.NUM_SYS_TOKENS+576]

        if self.num_task_tokens == 0 or layer_states[idx].shape[1] < 600:
            if self.pass_text_to_aux_head:
                inp_tokens = layer_states[idx]
        else:
            inp_tokens = torch.cat([inp_tokens, layer_states[idx][:, task_start_idx:task_end_idx]], dim=1)
            if self.pass_text_to_aux_head:
                inp_tokens = torch.cat([inp_tokens, layer_states[idx][:, end_idx:]], dim=1)
        
        if self.num_task_tokens == 0:
            task_emb = heads[i](inp_tokens)
        else:
            task_tokens = special_tokens
            if task != "gen":
                task_tokens = task_tokens.repeat(inp_tokens.shape[0], 1, 1)
            else:
                if not self.pass_text_to_aux_head:
                    task_tokens = inp_tokens[:, -self.num_task_tokens:]
                else:
                    task_tokens = inp_tokens[:, self.NUM_SYS_TOKENS+576:self.NUM_SYS_TOKENS+576+self.num_task_tokens]
                
            task_emb = heads[i](inp_tokens, task_tokens)

        return task_emb

    def depth_emb_forward(self, pil_images, layer_states, depth_mask):
        depth_preds = []
        depth_embs = []
        depth_loss = 0
        depth_l1_loss = 0
        depth_cont_loss = 0
        if "depth" in self.mode and layer_states[0].shape[1] > self.NUM_SYS_TOKENS: 
            if pil_images is not None:
                depth_targets, depth_gts = self._get_dav2_feats(pil_images, layer_states[0].device)
            else:
                depth_targets, depth_gts = None, None
            
            for i, idx in enumerate(self.depth_layer_indices):
                
                depth_feats = self.forward_emb_predictor(layer_states, idx, i, "depth", self.image_depth_heads, self.depth_tokens)
                depth_embs.append(depth_feats)

                with torch.no_grad():
                    if self.use_intermediate_depth:
                        depth_pred = self.da_v2_head(depth_feats)
                    else:
                        depth_pred = self.da_v2_head([depth_feats[0]] * 4)
                    min_val = depth_pred.amin(dim=(1, 2), keepdim=True)
                    max_val = depth_pred.amax(dim=(1, 2), keepdim=True)
                    depth_pred = (depth_pred - min_val) / (max_val - min_val)
                    depth_preds.append(depth_pred)

                if depth_mask is not None:
                    depth_mask.zero_()

                if depth_targets is not None:
                    layer_depth_loss, layer_l1_loss, layer_cont_loss = self._forward_depth(depth_feats, idx+1, depth_mask, depth_targets, depth_pred, depth_gts)
                    depth_loss += layer_depth_loss * self.img_depth_loss_weight
                    depth_l1_loss += layer_l1_loss * self.img_depth_loss_weight
                    depth_cont_loss += layer_cont_loss * self.img_depth_loss_weight
    
        return depth_preds, depth_embs, depth_loss, depth_l1_loss, depth_cont_loss
    
    def seg_emb_forward(self, pil_images, hidden_states, layer_states, seg_mask):
        seg_embs = []
        seg_loss = 0
        seg_l1_loss = 0
        seg_contrastive_loss = 0
        if "seg" in self.mode and layer_states[0].shape[1] > self.NUM_SYS_TOKENS:
            if pil_images is not None:
                seg_targets = self._get_seg_targets(pil_images, hidden_states)
            else:
                seg_targets = None
            for i, idx in enumerate(self.seg_layer_indices):

                seg_emb = self.forward_emb_predictor(layer_states, idx, i, "seg", self.image_seg_heads, self.seg_tokens)
                seg_embs.append(seg_emb)

                if seg_mask is not None:
                    seg_mask.zero_()

                if seg_targets is not None:
                    layer_seg_loss, seg_l1_loss, seg_contrastive_loss = self._forward_seg(seg_emb, idx+1, pil_images, seg_targets, seg_mask)
                    seg_loss += layer_seg_loss * self.img_seg_loss_weight
                    seg_l1_loss += seg_l1_loss * self.img_seg_loss_weight
                    seg_contrastive_loss += seg_contrastive_loss * self.img_seg_loss_weight
        
        return seg_embs, seg_loss, seg_l1_loss, seg_contrastive_loss
    
    def gen_emb_forward(self, pil_images, hidden_states, layer_states, gen_mask):
        img_embs = []
        gen_loss = 0
        gen_con_loss = 0
        gen_mse_loss = 0
        if "gen" in self.mode and layer_states[0].shape[1] > self.NUM_SYS_TOKENS:
            if pil_images is not None:
                gen_targets = self._get_gen_feats(pil_images, hidden_states.device)
            else:
                gen_targets = None
            
            for i, idx in enumerate(self.img_layer_indices):
                
                img_emb = self.forward_emb_predictor(layer_states, idx, i, "gen", self.image_gen_heads, self.gen_tokens)
                img_embs.append(img_emb)

                if gen_mask is not None:
                    gen_mask.zero_()

                if gen_targets is not None:
                    layer_gen_loss, layer_gen_con_loss, layer_gen_mse_loss = self._forward_gen(img_emb, idx+1, pil_images, gen_mask, gen_targets)
                    gen_loss += layer_gen_loss * self.img_gen_loss_weight
                    gen_con_loss += layer_gen_con_loss * self.img_gen_loss_weight
                    gen_mse_loss += layer_gen_mse_loss * self.img_gen_loss_weight
        
        return img_embs, gen_loss, gen_mse_loss, gen_con_loss
    

    @torch.no_grad()
    def get_visual_interpretations(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        **kwargs
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if True:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_labels_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                image_sizes=image_sizes
            )

        
        return self.forward(
            input_ids=inputs,
            inputs_embeds=inputs_embeds,
            position_ids=position_ids,
            attention_mask=attention_mask,
            return_dict=True,
            output_attentions=output_attentions,
            output_hidden_states=True,
        )

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_labels_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                image_sizes=image_sizes
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)

        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
                                      inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        image_sizes = kwargs.pop("image_sizes", None)
        pil_images = kwargs.pop("pil_images", None)
        
        depth_mask = kwargs.pop("seg_mask", None)
        gen_mask = kwargs.pop("seg_mask", None)
        seg_mask = kwargs.pop("seg_mask", None)
        
        inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            inputs['images'] = images
        if image_sizes is not None:
            inputs['image_sizes'] = image_sizes
        if pil_images is not None:
            inputs['pil_images'] = pil_images
        if depth_mask is not None:
            inputs['depth_mask'] = depth_mask
        if gen_mask is not None:
            inputs['gen_mask'] = gen_mask
        if seg_mask is not None:
            inputs['seg_mask'] = seg_mask
        return inputs