File size: 6,648 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid

from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from ola_vlm.conversation import conv_templates, SeparatorStyle
from ola_vlm.model.builder import load_pretrained_model
from ola_vlm.utils import disable_torch_init
from ola_vlm.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset
from PIL import Image
import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]

def load_jsonl(f):
        lines = open(f, encoding='utf-8').readlines()
        lines = [x.strip() for x in lines]
        if lines[-1] == '':
            lines = lines[:-1]
        data = [json.loads(x) for x in lines]
        return data

def prepare_CVBench(path):
    dataset = load_jsonl(os.path.join(path, 'test.jsonl'))
    data = []
    for i in range(len(dataset)):
        d = {
            "image": os.path.join(path, dataset[i]["filename"]),
            "question": dataset[i]["prompt"] + "\nOnly answer the option as the output. For example, if your answer is the option A, answer (A).",
            "answer": dataset[i]["answer"],
            "task": dataset[i]["task"],
            "source": dataset[i]["source"]
        }
        data.append(d)
    return data


# Custom dataset class
class CustomDataset(Dataset):
    def __init__(self, data, tokenizer, image_processor, model_config):        
        self.questions = data
        self.tokenizer = tokenizer
        self.image_processor = image_processor
        self.model_config = model_config

    def __getitem__(self, index):
        d = self.questions[index]
        qs = d["question"]
        image_file = d["image"]
        ans = d["answer"]
        task = d["task"]
        source = d["source"]

        if self.model_config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        image = Image.open(image_file).convert('RGB')
        image_tensor = process_images([image], self.image_processor, self.model_config)[0]

        input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')

        return input_ids, image_tensor, image.size, ans, task, source

    def __len__(self):
        return len(self.questions)


def collate_fn(batch):
    input_ids, image_tensors, image_sizes, answers, cats, cats_l2 = zip(*batch)
    input_ids = torch.stack(input_ids, dim=0)
    image_tensors = torch.stack(image_tensors, dim=0)
    return input_ids, image_tensors, image_sizes, answers, cats, cats_l2


# DataLoader
def create_data_loader(questions, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
    assert batch_size == 1, "batch_size must be 1"
    dataset = CustomDataset(questions, tokenizer, image_processor, model_config)
    data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn)
    return data_loader


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)

    questions = prepare_CVBench(args.path)
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")

    if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
        args.conv_mode = args.conv_mode + '_mmtag'
        print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')

    data_loader = create_data_loader(questions, tokenizer, image_processor, model.config)

    for (input_ids, image_tensor, image_sizes, answer, task, source), line in tqdm(zip(data_loader, questions), total=len(questions)):
        input_ids = input_ids.to(device='cuda', non_blocking=True)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
                image_sizes=image_sizes,
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                top_p=args.top_p,
                num_beams=args.num_beams,
                max_new_tokens=args.max_new_tokens,
                use_cache=True)

        if not isinstance(output_ids, torch.Tensor):
            output_ids = output_ids.sequences
            
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()

        ans_file.write(json.dumps({"prediction": outputs,
                                   "answer": answer,
                                   "question": line,
                                   "source": source,
                                   "task": task}) + "\n")
        # ans_file.flush()
    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--path", type=str, default="CV-Bench")
    parser.add_argument("--answers-file", type=str, default="cv-bench_answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="llava_phi_3")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--max_new_tokens", type=int, default=128)
    args = parser.parse_args()

    eval_model(args)