Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,946 Bytes
9fa3d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import shutil
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
import torch
from ola_vlm.model import *
from ola_vlm.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
kwargs = {"device_map": device_map, **kwargs}
if device != "cuda":
kwargs['device_map'] = {"": device}
if load_8bit:
kwargs['load_in_8bit'] = True
elif load_4bit:
kwargs['load_in_4bit'] = True
kwargs['quantization_config'] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
else:
kwargs['torch_dtype'] = torch.float16
if use_flash_attn:
kwargs['attn_implementation'] = 'flash_attention_2'
if 'llava' in model_name.lower() or 'clip' in model_name.lower() or 'sherlock' in model_name.lower() or 'dino' in model_name.lower():
# Load LLaVA model
if 'lora' in model_name.lower() and model_base is None:
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
if 'lora' in model_name.lower() and model_base is not None:
from ola_vlm.model.language_model.llava_llama import LlavaConfig
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
print('Loading LLaVA from base model...')
if "phi" in model_name.lower():
model = LlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
elif "qwen" in model_name.lower():
model = LlavaQwenForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
else:
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional LLaVA weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None:
# this may be mm projector only
print('Loading LLaVA from base model...')
if "probe" in model_name.lower():
cfg_pretrained = AutoConfig.from_pretrained(model_path)
if "phi" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
model = ProbeDSGLlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
elif "qwen" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_base)
model = ProbeDSGLlavaQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
model = ProbeDSGLlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
elif 'mpt' in model_name.lower():
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
elif "phi" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
cfg_pretrained = AutoConfig.from_pretrained(model_path)
if "dsg" in model_name.lower():
model = OlaLlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
elif "multi_enc" in model_name.lower():
model = MultiEncLlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
model = LlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
elif "qwen" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_base)
cfg_pretrained = AutoConfig.from_pretrained(model_path)
if "dsg" in model_name.lower():
model = OlaLlavaQwenForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
model = LlavaQwenForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
cfg_pretrained = AutoConfig.from_pretrained(model_path)
if "dsg" in model_name.lower():
model = OlaLlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
elif "multi_enc" in model_name.lower():
model = MultiEncLlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
else:
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
model.load_state_dict(mm_projector_weights, strict=False)
else:
if 'probe' in model_name.lower():
if 'phi' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = ProbeDSGLlavaPhi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
elif 'qwen' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = ProbeDSGLlavaQwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = ProbeDSGLlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
elif 'mpt' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
elif "phi" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
if "dsg" in model_name.lower():
model = OlaLlavaPhi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
elif "multi_enc" in model_name.lower():
model = MultiEncLlavaPhi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
else:
model = LlavaPhi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
elif "qwen" in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path)
if "dsg" in model_name.lower():
model = OlaLlavaQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
else:
model = LlavaQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
elif 'mistral' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = LlavaMistralForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**kwargs
)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
if "dsg" in model_name.lower():
model = OlaLlavaLlamaForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**kwargs
)
elif "multi_enc" in model_name.lower():
model = MultiEncLlavaLlamaForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**kwargs
)
else:
model = LlavaLlamaForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**kwargs
)
else:
# Load language model
if model_base is not None:
# PEFT model
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
print(f"Loading LoRA weights from {model_path}")
model = PeftModel.from_pretrained(model, model_path)
print(f"Merging weights")
model = model.merge_and_unload()
print('Convert to FP16...')
model.to(torch.float16)
else:
use_fast = False
if 'mpt' in model_name.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
image_processor = None
if 'llava' in model_name.lower() or 'sherlock' in model_name.lower() or 'probe' in model_name.lower() or 'clip' in model_name.lower() or 'dino' in model_name.lower():
if "convnext" in model_name.lower():
model = reload_from_ckpt(model_path, model)
vision_tower = model.get_vision_tower()
if "multi_enc" in model_name.lower():
model.get_model().init_encoders(model.config)
if not vision_tower.is_loaded:
vision_tower.load_model(device_map=device_map)
if device_map != 'auto':
vision_tower.to(device=device_map, dtype=torch.float16)
try:
if vision_tower.device != model.device:
vision_tower = vision_tower.to(model.device)
except:
pass
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
image_processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 4096
return tokenizer, model, image_processor, context_len
def reload_from_ckpt(model_path, model, cache_dir=None):
import os
from safetensors import safe_open
from huggingface_hub import hf_hub_download, list_repo_files
state_dict = {}
# Check if the path is a local directory or HF Hub model
if os.path.isdir(model_path):
# Local directory: Load safetensors files
safetensors_paths = [os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.safetensors')]
else:
# HF Hub: Get list of safetensors files and download them
repo_files = list_repo_files(model_path)
safetensors_paths = [
hf_hub_download(model_path, file_name, cache_dir=cache_dir)
for file_name in repo_files if file_name.endswith('.safetensors')
]
# Load safetensors files into the state_dict
for path in safetensors_paths:
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
if "vision_tower" in key:
state_dict[key] = f.get_tensor(key)
# Load the state dict into the model
model.load_state_dict(state_dict, strict=False)
return model |