File size: 15,946 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import warnings
import shutil

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
import torch
from ola_vlm.model import *
from ola_vlm.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN


def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
    kwargs = {"device_map": device_map, **kwargs}

    if device != "cuda":
        kwargs['device_map'] = {"": device}

    if load_8bit:
        kwargs['load_in_8bit'] = True
    elif load_4bit:
        kwargs['load_in_4bit'] = True
        kwargs['quantization_config'] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4'
        )
    else:
        kwargs['torch_dtype'] = torch.float16

    if use_flash_attn:
        kwargs['attn_implementation'] = 'flash_attention_2'

    if 'llava' in model_name.lower() or 'clip' in model_name.lower() or 'sherlock' in model_name.lower() or 'dino' in model_name.lower():
        # Load LLaVA model
        if 'lora' in model_name.lower() and model_base is None:
            warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
        if 'lora' in model_name.lower() and model_base is not None:
            from ola_vlm.model.language_model.llava_llama import LlavaConfig
            lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            print('Loading LLaVA from base model...')
            if "phi" in model_name.lower():
                model = LlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
            elif "qwen" in model_name.lower():
                model = LlavaQwenForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
            else:    
                model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
            token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
            if model.lm_head.weight.shape[0] != token_num:
                model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
                model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))

            print('Loading additional LLaVA weights...')
            if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
                non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
            else:
                # this is probably from HF Hub
                from huggingface_hub import hf_hub_download
                def load_from_hf(repo_id, filename, subfolder=None):
                    cache_file = hf_hub_download(
                        repo_id=repo_id,
                        filename=filename,
                        subfolder=subfolder)
                    return torch.load(cache_file, map_location='cpu')
                non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
            non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
            if any(k.startswith('model.model.') for k in non_lora_trainables):
                non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
            model.load_state_dict(non_lora_trainables, strict=False)

            from peft import PeftModel
            print('Loading LoRA weights...')
            model = PeftModel.from_pretrained(model, model_path)
            print('Merging LoRA weights...')
            model = model.merge_and_unload()
            print('Model is loaded...')
        elif model_base is not None:
            # this may be mm projector only
            print('Loading LLaVA from base model...')
            if "probe" in model_name.lower():
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                if "phi" in model_name.lower():
                    tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                    model = ProbeDSGLlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
                elif "qwen" in model_name.lower():
                    tokenizer = AutoTokenizer.from_pretrained(model_base)
                    model = ProbeDSGLlavaQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
                else:
                    tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                    model = ProbeDSGLlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
            elif 'mpt' in model_name.lower():
                if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
                    shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
                cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
                model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
            elif "phi" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                if "dsg" in model_name.lower():
                    model = OlaLlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
                elif "multi_enc" in model_name.lower():
                    model = MultiEncLlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
                else:
                    model = LlavaPhi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
            elif "qwen" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_base)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                if "dsg" in model_name.lower():
                    model = OlaLlavaQwenForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
                else:
                    model = LlavaQwenForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                if "dsg" in model_name.lower():
                    model = OlaLlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
                elif "multi_enc" in model_name.lower():
                    model = MultiEncLlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
                else:
                    model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)

            mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
            mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
            model.load_state_dict(mm_projector_weights, strict=False)
        else:
            if 'probe' in model_name.lower():
                if 'phi' in model_name.lower():
                    tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                    model = ProbeDSGLlavaPhi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
                elif 'qwen' in model_name.lower():
                    tokenizer = AutoTokenizer.from_pretrained(model_path)
                    model = ProbeDSGLlavaQwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
                else:
                    tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                    model = ProbeDSGLlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
            elif 'mpt' in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
            elif "phi" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                if "dsg" in model_name.lower():
                    model = OlaLlavaPhi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
                elif "multi_enc" in model_name.lower():
                    model = MultiEncLlavaPhi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
                else:
                    model = LlavaPhi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
            elif "qwen" in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                if "dsg" in model_name.lower():
                    model = OlaLlavaQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
                else:
                    model = LlavaQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
            elif 'mistral' in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                model = LlavaMistralForCausalLM.from_pretrained(
                    model_path,
                    low_cpu_mem_usage=True,
                    **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                if "dsg" in model_name.lower():
                    model = OlaLlavaLlamaForCausalLM.from_pretrained(
                        model_path,
                        low_cpu_mem_usage=True,
                        **kwargs
                    )
                elif "multi_enc" in model_name.lower():
                    model = MultiEncLlavaLlamaForCausalLM.from_pretrained(
                        model_path,
                        low_cpu_mem_usage=True,
                        **kwargs
                    )
                else:
                    model = LlavaLlamaForCausalLM.from_pretrained(
                        model_path,
                        low_cpu_mem_usage=True,
                        **kwargs
                    )
    else:
        # Load language model
        if model_base is not None:
            # PEFT model
            from peft import PeftModel
            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
            print(f"Loading LoRA weights from {model_path}")
            model = PeftModel.from_pretrained(model, model_path)
            print(f"Merging weights")
            model = model.merge_and_unload()
            print('Convert to FP16...')
            model.to(torch.float16)
        else:
            use_fast = False
            if 'mpt' in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)

    image_processor = None

    if 'llava' in model_name.lower() or 'sherlock' in model_name.lower() or 'probe' in model_name.lower() or 'clip' in model_name.lower() or 'dino' in model_name.lower():
        
        if "convnext" in model_name.lower():
            model = reload_from_ckpt(model_path, model)

        vision_tower = model.get_vision_tower()
        
        if "multi_enc" in model_name.lower():
            model.get_model().init_encoders(model.config)
        
        if not vision_tower.is_loaded:
            vision_tower.load_model(device_map=device_map)
        
        if device_map != 'auto':
            vision_tower.to(device=device_map, dtype=torch.float16)

        try:
            if vision_tower.device != model.device:
                vision_tower = vision_tower.to(model.device)
        except:
            pass
        
        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
        model.resize_token_embeddings(len(tokenizer))
        
        image_processor = vision_tower.image_processor

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 4096
    return tokenizer, model, image_processor, context_len


def reload_from_ckpt(model_path, model, cache_dir=None):
    import os
    from safetensors import safe_open
    from huggingface_hub import hf_hub_download, list_repo_files

    state_dict = {}

    # Check if the path is a local directory or HF Hub model
    if os.path.isdir(model_path):
        # Local directory: Load safetensors files
        safetensors_paths = [os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.safetensors')]
    else:
        # HF Hub: Get list of safetensors files and download them
        repo_files = list_repo_files(model_path)
        safetensors_paths = [
            hf_hub_download(model_path, file_name, cache_dir=cache_dir)
            for file_name in repo_files if file_name.endswith('.safetensors')
        ]

    # Load safetensors files into the state_dict
    for path in safetensors_paths:
        with safe_open(path, framework="pt", device="cpu") as f:
            for key in f.keys():
                if "vision_tower" in key:
                    state_dict[key] = f.get_tensor(key)

    # Load the state dict into the model
    model.load_state_dict(state_dict, strict=False)
    return model