File size: 29,226 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from abc import ABC, abstractmethod

import torch
import torch.nn as nn

from .multimodal_encoder.builder import build_vision_tower
from .multimodal_projector.builder import build_vision_projector

from ola_vlm.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN

from ola_vlm.mm_utils import get_anyres_image_grid_shape
import numpy as np

from ola_vlm.model.aux_heads.sam_utils.build_sam import sam_model_registry
from ola_vlm.model.aux_heads.sam_utils.automatic_mask_generator import SamAutomaticMaskGenerator
from ola_vlm.model.aux_heads.depth_anything_v2.dpt import DepthAnythingV2
from diffusers import StableUnCLIPImg2ImgPipeline
import torch.nn.functional as F
import copy

from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead, OneFormerSegHead, OneFormerTaskTokenSegHead
from transformers import OneFormerProcessor, OneFormerConfig

# import torch
from torchvision import transforms
from PIL import Image



def build_mlp(in_hidden_size, hidden_size):
    modules = [nn.Linear(in_hidden_size, hidden_size)]
    modules.append(nn.GELU())
    modules.append(nn.Linear(hidden_size, hidden_size))
    return nn.Sequential(*modules)

model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}

class MultiEncLlavaMetaModel:

    def __init__(self, config):
        super(MultiEncLlavaMetaModel, self).__init__(config)
        self.attn_mask_type = 'causal'

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=False)
            self.mm_projector = build_vision_projector(config)

            if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
                self.image_newline = nn.Parameter(
                    torch.empty(config.hidden_size, dtype=self.dtype)
                )

            self.aggr = getattr(config, 'aggregation', "features")
            if  self.aggr == "tokens":
                depth_config = copy.deepcopy(config)
                depth_config.mm_hidden_size = config.depth_dim
                self.depth_projector = build_vision_projector(depth_config)

                gen_config = copy.deepcopy(config)
                gen_config.mm_hidden_size = config.gen_dim
                self.gen_projector = build_vision_projector(gen_config)

                seg_config = copy.deepcopy(config)
                seg_config.mm_hidden_size = config.seg_dim
                self.seg_projector = build_vision_projector(seg_config)
            
            self.init_encoders(config)

            self.set_attn_mask_type(config)

    def init_encoders(self, config):
        encoder = 'vitl' # or 'vits', 'vitb', 'vitg'
        self.dav2_model = DepthAnythingV2(**model_configs[encoder])
        self.dav2_model.load_state_dict(torch.load(config.depth_estimator, map_location='cpu'))
        self.dav2_model.eval()
        
        self.aggr = getattr(config, 'aggregation', "features")

        try:
            self.dav2_model = self.dav2_model.cuda()
        except:
            pass

        self.pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(config.image_generator, torch_dtype=torch.float16, variant="fp16")

        self.seg_teacher = getattr(config, "seg_teacher", "oneformer")
        if self.seg_teacher == "sam":
            self.sam = sam_model_registry["vit_l"](checkpoint=self.config.image_segmentor)
            try:
                self.sam = self.sam.to("cuda")
            except:
                pass
            for p in self.sam.parameters():
                p.requires_grad = False
            self.mask_generator = SamAutomaticMaskGenerator(self.sam)
        
        elif self.seg_teacher == "oneformer":
            self.oneformer_processor = OneFormerProcessor.from_pretrained(config.image_segmentor)
            self.oneformer = OneFormerHead.from_pretrained(config.image_segmentor)
            for p in self.oneformer.parameters():
                p.requires_grad = False
            try:
                self.oneformer = self.oneformer.to("cuda")
            except:
                pass
            self.mask_generator = None

    def set_attn_mask_type(self, config):
        if hasattr(config, 'attn_mask_type'):
            self.attn_mask_type = config.attn_mask_type
        else:
            self.attn_mask_type = 'causal'
        print(f"Setting attn_mask_type to {self.attn_mask_type}")

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
        mm_patch_merge_type = model_args.mm_patch_merge_type

        self.config.mm_vision_tower = vision_tower

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
            else:
                self.vision_tower = vision_tower
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_tower = self.vision_tower[0]
            else:
                vision_tower = self.vision_tower
            vision_tower.load_model()

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
        self.config.mm_hidden_size = vision_tower.hidden_size
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature
        self.config.mm_patch_merge_type = mm_patch_merge_type

        if getattr(self, 'mm_projector', None) is None:
            if getattr(model_args, 'aggregation', "features") == "features":
                self.config.mm_hidden_size = self.config.mm_hidden_size + model_args.depth_dim + model_args.seg_dim + model_args.gen_dim 
            self.mm_projector = build_vision_projector(self.config)

            if getattr(model_args, 'aggregation', "features") == "tokens":
                depth_config = copy.deepcopy(self.config)
                depth_config.mm_hidden_size = model_args.depth_dim
                self.depth_projector = build_vision_projector(depth_config)

                gen_config = copy.deepcopy(self.config)
                gen_config.mm_hidden_size = model_args.gen_dim
                self.gen_projector = build_vision_projector(gen_config)

                seg_config = copy.deepcopy(self.config)
                seg_config.mm_hidden_size = model_args.seg_dim
                self.seg_projector = build_vision_projector(seg_config)

            if 'unpad' in mm_patch_merge_type:
                embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
                self.image_newline = nn.Parameter(
                    torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
                )
        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}

            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))


def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of PIL image (width, height).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding:current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding:current_width - padding]

    return unpadded_tensor

def unpad_prep_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of PIL image (width, height).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        mode = "height"
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding:current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding:current_width - padding]
        mode = "width"

    return unpadded_tensor, mode, padding


def reverse_convnext_preprocess(preprocessed_tensor):
    unnormalize = transforms.Normalize(mean=[-0.5/0.5, -0.5/0.5, -0.5/0.5], std=[1/0.5, 1/0.5, 1/0.5])
    image_tensor = torch.clamp(unnormalize(preprocessed_tensor), 0, 1)
    return transforms.ToPILImage()(image_tensor)

class MultiEncLlavaMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    @property
    def attn_mask_type(self):
        return self.get_model().attn_mask_type

    def get_seg_targets(self, pil_images, preds):
        def _get_feats(img, mask_generator):
            if self.get_model().seg_teacher == "oneformer":
                img = img.resize((768, 768))
                inputs = self.get_model().oneformer_processor(img, ["panoptic"], return_tensors="pt")
                self.get_model().oneformer = self.get_model().oneformer.to(preds.device, preds.dtype)
                inputs["pixel_values"] = inputs["pixel_values"].to(preds.device, preds.dtype)
                with torch.no_grad():
                    feats = self.get_model().oneformer.forward_features(**inputs)
            else:
                img = np.array(img)
                mask_generator.predictor.set_image(img, dtype=preds.dtype)
                feats = mask_generator.predictor.features
                mask_generator.predictor.reset_image()
                feats = F.interpolate(feats, (24, 24), mode="bicubic", align_corners=False)
            feats = feats.permute(0, 2, 3, 1)
            feats = feats.reshape(1, -1, feats.shape[-1])
            return feats

        seg_targets = []
        for img in pil_images:
            feat = _get_feats(img, self.get_model().mask_generator)
            seg_targets.append(feat)

        seg_targets = torch.stack(seg_targets, dim=0).squeeze(1)
        return seg_targets

    def get_dav2_feats(self, pil_images, device):
        self.get_model().dav2_model = self.get_model().dav2_model.to(device)
        dav2_feats = []
        for img in pil_images:
            img = img.resize((336, 336))
            img = np.array(img)
            feat = self.get_model().dav2_model.infer_image(img, is_dsg=True)
            feat = (feat[0][0] + feat[1][0] + feat[2][0] + feat[3][0]) / 4
            dav2_feats.append(feat.to(device))

        dav2_feats = torch.stack(dav2_feats, dim=0).squeeze(1)
        return dav2_feats

    def get_gen_feats(self, pil_images, device):
        gen_feats = []
        self.get_model().pipe.image_encoder = self.get_model().pipe.image_encoder.to(device)
        for img in pil_images:
            clip_ims = self.get_model().pipe.feature_extractor(images=img, return_tensors="pt").pixel_values.to(device)
            feat = self.get_model().pipe.image_encoder(clip_ims).image_embeds
            gen_feats.append(feat)

        gen_feats = torch.stack(gen_feats, dim=0)
        return gen_feats
    
    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images).to(images.dtype).to(images.device)
        
        if self.get_model().aggr == "tokens":
            image_features = self.get_model().mm_projector(image_features)

        pil_images = [reverse_convnext_preprocess(images[i].float()) for i in range(images.shape[0])]
        
        depth_feats = self.get_dav2_feats(pil_images, image_features.device).to(image_features.dtype)
        
        if self.get_model().aggr == "tokens":
            depth_feats = depth_feats.permute(0, 2, 1)
            depth_feats = F.avg_pool1d(depth_feats, kernel_size=72)
            depth_feats = depth_feats.permute(0, 2, 1)
            depth_feats = self.get_model().depth_projector(depth_feats)

        gen_feats = self.get_gen_feats(pil_images, image_features.device).to(image_features.dtype)
        
        if self.get_model().aggr == "tokens":
            gen_feats = gen_feats.repeat(1, 8, 1)
            gen_feats = self.get_model().gen_projector(gen_feats)
        else:
            gen_feats = gen_feats.repeat(1, image_features.shape[1], 1)

        seg_feats = self.get_seg_targets(pil_images, image_features).to(image_features.dtype)
        
        if self.get_model().aggr == "tokens":
            seg_feats = seg_feats.permute(0, 2, 1)
            seg_feats = F.avg_pool1d(seg_feats, kernel_size=72)
            seg_feats = seg_feats.permute(0, 2, 1)
            seg_feats = self.get_model().seg_projector(seg_feats)
        
        if self.get_model().aggr == "tokens":
            # image_features = torch.cat([image_features, depth_feats, seg_feats, gen_feats], dim=1)
            image_features = torch.cat([image_features, gen_feats, depth_feats, seg_feats], dim=1)
        else:
            # image_features = torch.cat([image_features, depth_feats, seg_feats, gen_feats], dim=2)
            image_features = torch.cat([image_features, gen_feats, depth_feats, seg_feats], dim=2)
            image_features = self.get_model().mm_projector(image_features)

        return image_features
    
    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels,
        images, image_sizes=None
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels, None

        if type(images) is list or images.ndim == 5:
            if type(images) is list:
                images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
            concat_images = torch.cat([image for image in images], dim=0)
            image_features = self.encode_images(concat_images)
            split_sizes = [image.shape[0] for image in images]
            image_features = torch.split(image_features, split_sizes, dim=0)
            mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
            image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
            if mm_patch_merge_type == 'flat':
                image_features = [x.flatten(0, 1) for x in image_features]
            elif mm_patch_merge_type.startswith('spatial'):
                new_image_features = []
                for image_idx, image_feature in enumerate(image_features):
                    if image_feature.shape[0] > 1:
                        base_image_feature = image_feature[0]
                        image_feature = image_feature[1:]
                        height = width = self.get_vision_tower().num_patches_per_side
                        assert height * width == base_image_feature.shape[0]
                        if image_aspect_ratio == 'anyres':
                            num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
                            image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                        else:
                            raise NotImplementedError
                        if 'unpad' in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            image_feature = torch.cat((
                                image_feature,
                                self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
                            ), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        else:
                            image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
                            image_feature = image_feature.flatten(0, 3)
                        image_feature = torch.cat((base_image_feature, image_feature), dim=0)
                    else:
                        image_feature = image_feature[0]
                        if 'unpad' in mm_patch_merge_type:
                            image_feature = torch.cat((
                                image_feature,
                                self.model.image_newline[None].to(image_feature.device)
                            ), dim=0)
                    new_image_features.append(image_feature)
                image_features = new_image_features
            else:
                raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
        else:
            image_features = self.encode_images(images)
        
        # TODO: image start / end is not implemented here to support pretraining.
        if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
            raise NotImplementedError

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)
            do_sample = False
        else:
            do_sample = True

        # remove the padding using attention_mask -- FIXME
        _input_ids = input_ids
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] 
        
        new_input_embeds = []
        new_labels = []
        block_indices = [None] * len(input_ids)
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []

            num_tokens = 0
            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    num_tokens += cur_input_embeds_no_im[i].shape[0]
                    cur_image_features = image_features[cur_image_idx]
                    cur_image_idx += 1
                    
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
                    num_tokens += cur_image_features.shape[0]
                        
            if self.attn_mask_type == "block-causal":
                indices = ["block-causal", image_token_indices[1], num_tokens]
                block_indices[batch_idx] = indices

            cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
        if tokenizer_model_max_length is not None:
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
                new_input_embeds_padded.append(torch.cat((
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
                    cur_new_embed
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((
                    cur_new_embed,
                    torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
                ), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
        
        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, block_indices

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False