File size: 9,640 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import logging
import os
from dataclasses import asdict
from pathlib import Path
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn

from open_clip.model import CLIP, CustomTextCLIP, convert_weights_to_lp,\
    get_cast_dtype, set_model_preprocess_cfg, convert_to_custom_text_state_dict, resize_pos_embed
from open_clip.coca_model import CoCa
from open_clip.openai import load_openai_model
from open_clip.pretrained import get_pretrained_cfg, download_pretrained,\
    list_pretrained_tags_by_model, download_pretrained_from_hf
from open_clip.transform import image_transform_v2, PreprocessCfg, merge_preprocess_dict, merge_preprocess_kwargs
from open_clip.factory import get_model_config, _get_hf_config, list_models, load_state_dict, load_checkpoint
HF_HUB_PREFIX = 'hf-hub:'

def create_model(
        model_name: str,
        pretrained: Optional[str] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_patch_dropout: Optional[float] = None,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        force_preprocess_cfg: Optional[Dict[str, Any]] = None,
        pretrained_image: bool = False,
        pretrained_hf: bool = True,
        cache_dir: Optional[str] = None,
        output_dict: Optional[bool] = None,
        require_pretrained: bool = False,
        load_ckpt: Optional[bool] = True,
        **model_kwargs,
):
    force_preprocess_cfg = force_preprocess_cfg or {}
    preprocess_cfg = asdict(PreprocessCfg())
    has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX)
    if has_hf_hub_prefix:
        model_id = model_name[len(HF_HUB_PREFIX):]
        checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
        config = _get_hf_config(model_id, cache_dir)
        preprocess_cfg = merge_preprocess_dict(preprocess_cfg, config['preprocess_cfg'])
        model_cfg = config['model_cfg']
        pretrained_hf = False  # override, no need to load original HF text weights
    else:
        model_name = model_name.replace('/', '-')  # for callers using old naming with / in ViT names
        checkpoint_path = None
        model_cfg = None

    if isinstance(device, str):
        device = torch.device(device)

    if pretrained and pretrained.lower() == 'openai':
        logging.info(f'Loading pretrained {model_name} from OpenAI.')
        model = load_openai_model(
            model_name,
            precision=precision,
            device=device,
            cache_dir=cache_dir,
        )
    else:
        model_cfg = model_cfg or get_model_config(model_name)
        if model_cfg is not None:
            logging.info(f'Loaded {model_name} model config.')
        else:
            logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
            raise RuntimeError(f'Model config for {model_name} not found.')

        if force_quick_gelu:
            # override for use of QuickGELU on non-OpenAI transformer models
            model_cfg["quick_gelu"] = True

        if force_patch_dropout is not None:
            # override the default patch dropout value
            model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout

        if force_image_size is not None:
            # override model config's image size
            model_cfg["vision_cfg"]["image_size"] = force_image_size

        is_timm_model = 'timm_model_name' in model_cfg.get('vision_cfg', {})
        if pretrained_image:
            if is_timm_model:
                # pretrained weight loading for timm models set via vision_cfg
                model_cfg['vision_cfg']['timm_model_pretrained'] = True
            else:
                assert False, 'pretrained image towers currently only supported for timm models'

        # cast_dtype set for fp16 and bf16 (manual mixed-precision), not set for 'amp' or 'pure' modes
        cast_dtype = get_cast_dtype(precision)
        is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {})
        if is_hf_model:
            # load pretrained weights for HF text model IFF no CLIP weights being loaded
            model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf and not pretrained
        custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model

        model_cfg = dict(model_cfg, **model_kwargs)  # merge cfg dict w/ kwargs (kwargs overrides cfg)
        if custom_text:
            if "multimodal_cfg" in model_cfg:
                model = CoCa(**model_cfg, cast_dtype=cast_dtype)
            else:
                model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype)
        else:
            model = CLIP(**model_cfg, cast_dtype=cast_dtype)

        if precision in ("fp16", "bf16"):
            dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
            # manual mixed precision that matches original OpenAI behaviour
            if is_timm_model:
                # FIXME this is a bit janky, create timm based model in low-precision and
                # then cast only LayerNormFp32 instances back to float32 so they don't break.
                # Why? The convert_weights_to_lp fn only works with native models.
                model.to(dtype=dtype)
                from open_clip.transformer import LayerNormFp32

                def _convert_ln(m):
                    if isinstance(m, LayerNormFp32):
                        m.weight.data = m.weight.data.to(torch.float32)
                        m.bias.data = m.bias.data.to(torch.float32)
                model.apply(_convert_ln)
            else:
                convert_weights_to_lp(model, dtype=dtype)
        elif precision in ("pure_fp16", "pure_bf16"):
            dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
            model.to(dtype=dtype)

        pretrained_loaded = False
        if pretrained:
            checkpoint_path = ''
            pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
            if pretrained_cfg:
                checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
                preprocess_cfg = merge_preprocess_dict(preprocess_cfg, pretrained_cfg)
            elif os.path.exists(pretrained):
                checkpoint_path = pretrained

            if checkpoint_path:
                logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
                if load_ckpt:
                    load_checkpoint(model, checkpoint_path)
            else:
                error_str = (
                    f'Pretrained weights ({pretrained}) not found for model {model_name}.'
                    f' Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
                logging.warning(error_str)
                raise RuntimeError(error_str)
            pretrained_loaded = True
        elif has_hf_hub_prefix:
            if load_ckpt:
                logging.info(f'Loading pretrained {model_name} weights ({checkpoint_path}).')
                load_checkpoint(model, checkpoint_path)
            pretrained_loaded = True

        if require_pretrained and not pretrained_loaded:
            # callers of create_model_from_pretrained always expect pretrained weights
            raise RuntimeError(
                f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.')

    if output_dict and hasattr(model, "output_dict"):
        model.output_dict = True

    if jit:
        model = torch.jit.script(model)

    # set image preprocessing configuration in model attributes for convenience
    if getattr(model.visual, 'image_size', None) is not None:
        # use image_size set on model creation (via config or force_image_size arg)
        force_preprocess_cfg['size'] = model.visual.image_size
    set_model_preprocess_cfg(model, merge_preprocess_dict(preprocess_cfg, force_preprocess_cfg))

    return model


def create_model_from_pretrained(
        model_name: str,
        pretrained: Optional[str] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        image_mean: Optional[Tuple[float, ...]] = None,
        image_std: Optional[Tuple[float, ...]] = None,
        image_interpolation: Optional[str] = None,
        image_resize_mode: Optional[str] = None,  # only effective for inference
        return_transform: bool = True,
        cache_dir: Optional[str] = None,
        load_ckpt: Optional[bool] = True,
        **model_kwargs,
):
    force_preprocess_cfg = merge_preprocess_kwargs(
        {}, mean=image_mean, std=image_std, interpolation=image_interpolation, resize_mode=image_resize_mode)

    model = create_model(
        model_name,
        pretrained,
        precision=precision,
        device=device,
        jit=jit,
        force_quick_gelu=force_quick_gelu,
        force_custom_text=force_custom_text,
        force_image_size=force_image_size,
        force_preprocess_cfg=force_preprocess_cfg,
        cache_dir=cache_dir,
        require_pretrained=True,
        load_ckpt=load_ckpt,
        **model_kwargs,
    )

    if not return_transform:
        return model

    preprocess = image_transform_v2(
        PreprocessCfg(**model.visual.preprocess_cfg),
        is_train=False,
    )

    return model, preprocess