Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,165 Bytes
9fa3d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class AttentionPool2d(nn.Module):
def __init__(self, seq_len: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(seq_len + 1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x, return_all_tokens=False):
# x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = x.permute(1, 0, 2) # (N(HW)C) => (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(query=x,
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False)
if return_all_tokens:
return x
else:
return x[0]
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.in_dim = dim
self.out_dim = output_dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
output_embeds = self.norm_out(latents)
return output_embeds
class TaskTokenResampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
num_queries=8,
heads=16,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
):
super().__init__()
# self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
# self.task_w = nn.Parameter(torch.tensor(0.0))
self.proj_in = nn.Linear(embedding_dim, dim)
self.num_queries = num_queries
self.dim = dim
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.in_dim = dim
self.out_dim = output_dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
def forward(self, x, latents):
if latents is None:
latents = torch.zeros(x.size[0], self.num_queries, self.dim)
else:
if latents.shape[1] != self.num_queries:
if self.num_queries > 1 and self.num_queries % latents.shape[1] == 0:
n = latents.shape[1]
latents = latents.repeat(1, self.num_queries // n, 1)
else:
latents = latents.mean(dim=1, keepdim=True).repeat(1, self.num_queries, 1)
latents = self.proj_in(latents)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
output_embeds = self.norm_out(latents)
return output_embeds
class ResamplerXL(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output1_dim=768,
output2_dim=1280,
ff_mult=4,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
# self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(dim)
self.in_dim = dim
self.out_dim = output1_dim + output2_dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim)
self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim)
self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim)
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
hidden_embeds = self.norm_out(latents)
encoder_hidden_1 = self.unet_proj_1(hidden_embeds) # [bs, 256, 768]
encoder_hidden_2 = self.unet_proj_2(hidden_embeds) # [bs, 256, 1280]
prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1) # [bs, 256, 2048]
pooled_prompt_embeds = self.unet_attnpool(hidden_embeds) # [bs, 1280]
return prompt_embeds, pooled_prompt_embeds
class ResamplerXLV2(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output1_dim=768,
output2_dim=1280,
ff_mult=4,
normalize=True
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.normalize = normalize
self.proj_in = nn.Linear(embedding_dim, dim)
# self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(dim)
self.in_dim = dim
self.out_dim = output1_dim + output2_dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList([
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]))
self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim)
self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim)
self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim)
def forward(self, x,pooled_text_embeds=None):
latents = self.latents.repeat(x.size(0), 1, 1)
if self.normalize:
x = F.normalize(x)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
hidden_embeds = self.norm_out(latents)
encoder_hidden_1 = self.unet_proj_1(hidden_embeds) # [bs, 256, 768]
encoder_hidden_2 = self.unet_proj_2(hidden_embeds) # [bs, 256, 1280]
prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1) # [bs, 256, 2048]
pooled_prompt_embeds = self.unet_attnpool(hidden_embeds) # [bs, 1280]
return prompt_embeds, pooled_prompt_embeds
class ResamplerXLIdentity(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x, pooled_text_embeds=None):
return x, pooled_text_embeds
if __name__ == '__main__':
image_proj_model = Resampler(dim=1024,
depth=4,
dim_head=64,
heads=12,
num_queries=1024,
embedding_dim=1024,
output_dim=1024,
ff_mult=4)
numel = 0
for name, param in image_proj_model.named_parameters():
numel += param.numel()
print(f'Total params: {numel}') |