File size: 66,946 Bytes
9fa3d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import os
import copy
from dataclasses import dataclass, field
import json
import logging
import pathlib
from typing import Dict, Optional, Sequence, List

import numpy as np
import torch

import transformers
import tokenizers

from ola_vlm.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from torch.utils.data import Dataset
from ola_vlm.train.llava_trainer import LLaVATrainer

from ola_vlm import conversation as conversation_lib
from ola_vlm.model import *
from ola_vlm.mm_utils import tokenizer_image_token

from PIL import Image, ImageFile
from transformers import set_seed

set_seed(42)

# Enable loading of truncated images
ImageFile.LOAD_TRUNCATED_IMAGES = True


local_rank = None


def rank0_print(*args):
    if local_rank == 0:
        print(*args)


from packaging import version
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse('0.14')


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
    version: Optional[str] = field(default="v0")
    freeze_backbone: bool = field(default=False)
    tune_mm_mlp_adapter: bool = field(default=False)
    unfreeze_mm_vision_tower: bool = field(default=False)
    unfreeze_whole_model: bool = field(default=False)
    use_s2: bool = field(default=False)
    s2_scales: Optional[str] = field(default="336,1008")
    vision_tower: Optional[str] = field(default=None)
    mm_vision_select_layer: Optional[int] = field(default=-1)   # default to the last layer
    pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
    mm_projector_type: Optional[str] = field(default='linear')
    mm_use_im_start_end: bool = field(default=False)
    mm_use_im_patch_token: bool = field(default=True)
    mm_patch_merge_type: Optional[str] = field(default='flat')
    mm_vision_select_feature: Optional[str] = field(default="patch")

    attn_mask_type: Optional[str] = field(default="causal")

    contrastive_loss_weight: Optional[float] = field(default=0.1)
    
    # visual interpretors
    image_generator: Optional[str] = field(default="stabilityai/stable-diffusion-2-1-unclip")
    image_segmentor: Optional[str] = field(default="shi-labs/oneformer_coco_swin_large") # sam_vit_l_0b3195.pth
    depth_estimator: Optional[str] = field(default="depth_anything_v2_vitl.pth")

    mode: Optional[str] = field(default="depth-seg-gen")
    num_task_tokens: Optional[int] = 0
    task_token_format: Optional[str] = "expand_emb"
    sample_tokens: Optional[bool] = False
    pass_text_to_aux: Optional[bool] = False

    # dinov2
    use_dinov2: Optional[bool] = False
    dinov2_model: Optional[str] = "/mnt/projects4jw/jiteshjain_sherlock/dinov2-large-res336"
    dinov2_dim: Optional[str] = 1024
    dinov2_layers: Optional[str] = "8-12"
    dinov2_loss_weight: Optional[float] = 0.25
    
    use_contrastive: Optional[bool] = True
    use_ce: Optional[bool] = False
    layer_indices: Optional[str] = "d8-14_s10-16_g12-18"
    loss_weights: Optional[str] = "d0.5_s0.5_g0.5"

    # gen
    img_head_depth: Optional[int] = 1
    img_head_dim_head: Optional[int] = 32
    img_head_num_heads: Optional[int] = 4
    img_head_num_tokens: Optional[int] = 1
    img_head_output_dim: Optional[int] = 1024
    img_head_ff_mult: Optional[int] = 1

    # seg
    seg_head_depth: Optional[int] = 1
    seg_head_dim_head: Optional[int] = 32
    seg_head_num_heads: Optional[int] = 4
    seg_head_num_tokens: Optional[int] = 576
    seg_head_output_dim: Optional[int] = 1536 # 256
    seg_head_ff_mult: Optional[int] = 1
    seg_teacher: Optional[str] = "oneformer" # "sam"

    # depth
    depth_head_depth: Optional[int] = 1
    depth_head_dim_head: Optional[int] = 32
    depth_head_num_heads: Optional[int] = 4
    depth_head_num_tokens: Optional[int] = 576
    depth_head_output_dim: Optional[int] = 1024
    depth_head_ff_mult: Optional[int] = 1
    use_intermediate_depth: Optional[bool] = False

    freeze_task_token: Optional[bool] = field(default=False)
    freeze_aux_heads: Optional[bool] = field(default=False)
    use_reference_model: Optional[bool] = field(default=False)

@dataclass
class DataArguments:
    data_path: str = field(default=None,
                           metadata={"help": "Path to the training data."})
    lazy_preprocess: bool = False
    is_multimodal: bool = False
    image_folder: Optional[str] = field(default=None)
    depth_folder: Optional[str] = field(default=None)
    unclip_folder: Optional[str] = field(default=None)
    seg_folder: Optional[str] = field(default=None)
    image_aspect_ratio: str = 'square'
    use_cost: bool = False


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    remove_unused_columns: bool = field(default=False)
    freeze_mm_mlp_adapter: bool = field(default=False)
    mpt_attn_impl: Optional[str] = field(default="triton")
    model_max_length: int = field(
        default=512,
        metadata={
            "help":
            "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    double_quant: bool = field(
        default=True,
        metadata={"help": "Compress the quantization statistics through double quantization."}
    )
    quant_type: str = field(
        default="nf4",
        metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
    )
    bits: int = field(
        default=16,
        metadata={"help": "How many bits to use."}
    )
    lora_enable: bool = False
    lora_r: int = 64
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_weight_path: str = ""
    lora_bias: str = "none"
    mm_projector_lr: Optional[float] = None
    mm_vision_lr: Optional[float] = None
    group_by_modality_length: bool = field(default=False)


def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
    if bias == "none":
        to_return = {k: t for k, t in named_params if "lora_" in k}
    elif bias == "all":
        to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
    elif bias == "lora_only":
        to_return = {}
        maybe_lora_bias = {}
        lora_bias_names = set()
        for k, t in named_params:
            if "lora_" in k:
                to_return[k] = t
                bias_name = k.split("lora_")[0] + "bias"
                lora_bias_names.add(bias_name)
            elif "bias" in k:
                maybe_lora_bias[k] = t
        for k, t in maybe_lora_bias:
            if bias_name in lora_bias_names:
                to_return[bias_name] = t
    else:
        raise NotImplementedError
    to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
    return to_return


def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
    to_return = {k: t for k, t in named_params if "lora_" not in k}
    if require_grad_only:
        to_return = {k: t for k, t in to_return.items() if t.requires_grad}
    to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
    return to_return


def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
    to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
    to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
    return to_return


def find_all_linear_names(model):
    cls = torch.nn.Linear
    lora_module_names = set()
    multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler']
    for name, module in model.named_modules():
        if any(mm_keyword in name for mm_keyword in multimodal_keywords):
            continue
        if isinstance(module, cls):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if 'lm_head' in lora_module_names: # needed for 16-bit
        lora_module_names.remove('lm_head')
    return list(lora_module_names)


def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
                                   output_dir: str):
    """Collects the state dict and dump to disk."""

    if getattr(trainer.args, "tune_mm_mlp_adapter", False):
        # Only save Adapter
        keys_to_match = ['mm_projector']
        if getattr(trainer.args, "use_im_start_end", False):
            keys_to_match.extend(['embed_tokens', 'embed_in'])

        weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match)
        trainer.model.config.save_pretrained(output_dir)

        current_folder = output_dir.split('/')[-1]
        parent_folder = os.path.dirname(output_dir)
        if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
            if current_folder.startswith('checkpoint-'):
                mm_projector_folder = os.path.join(parent_folder, "mm_projector")
                os.makedirs(mm_projector_folder, exist_ok=True)
                torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin'))
            else:
                torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))

    if trainer.deepspeed:
        torch.cuda.synchronize()
        trainer.save_model(output_dir)
        return

    state_dict = trainer.model.state_dict()
    if trainer.args.should_save:
        cpu_state_dict = {
            key: value.cpu()
            for key, value in state_dict.items()
        }
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa


def smart_tokenizer_and_embedding_resize(
    special_tokens_dict: Dict,
    tokenizer: transformers.PreTrainedTokenizer,
    model: transformers.PreTrainedModel,
):
    """Resize tokenizer and embedding.

    Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
    """
    num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
    model.resize_token_embeddings(len(tokenizer))

    if num_new_tokens > 0:
        input_embeddings = model.get_input_embeddings().weight.data
        output_embeddings = model.get_output_embeddings().weight.data

        input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True)
        output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True)

        input_embeddings[-num_new_tokens:] = input_embeddings_avg
        output_embeddings[-num_new_tokens:] = output_embeddings_avg


def _tokenize_fn(strings: Sequence[str],
                 tokenizer: transformers.PreTrainedTokenizer) -> Dict:
    """Tokenize a list of strings."""
    tokenized_list = [
        tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ) for text in strings
    ]
    input_ids = labels = [
        tokenized.input_ids[0] for tokenized in tokenized_list
    ]
    input_ids_lens = labels_lens = [
        tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
        for tokenized in tokenized_list
    ]
    return dict(
        input_ids=input_ids,
        labels=labels,
        input_ids_lens=input_ids_lens,
        labels_lens=labels_lens,
    )


def _mask_targets(target, tokenized_lens, speakers):
    # cur_idx = 0
    cur_idx = tokenized_lens[0]
    tokenized_lens = tokenized_lens[1:]
    target[:cur_idx] = IGNORE_INDEX
    for tokenized_len, speaker in zip(tokenized_lens, speakers):
        if speaker == "human":
            target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
        cur_idx += tokenized_len


def _add_speaker_and_signal(header, source, get_conversation=True):
    """Add speaker and start/end signal on each round."""
    BEGIN_SIGNAL = "### "
    END_SIGNAL = "\n"
    conversation = header
    for sentence in source:
        from_str = sentence["from"]
        if from_str.lower() == "human":
            from_str = conversation_lib.default_conversation.roles[0]
        elif from_str.lower() == "gpt":
            from_str = conversation_lib.default_conversation.roles[1]
        else:
            from_str = 'unknown'
        sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
                             sentence["value"] + END_SIGNAL)
        if get_conversation:
            conversation += sentence["value"]
    conversation += BEGIN_SIGNAL
    return conversation


def preprocess_multimodal(
    sources: Sequence[str],
    data_args: DataArguments
) -> Dict:
    is_multimodal = data_args.is_multimodal
    if not is_multimodal:
        return sources

    for source in sources:
        for sentence in source:
            if DEFAULT_IMAGE_TOKEN in sentence['value']:
                sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
                sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
                sentence['value'] = sentence['value'].strip()
                if "mmtag" in conversation_lib.default_conversation.version:
                    sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '<Image>' + DEFAULT_IMAGE_TOKEN + '</Image>')
            replace_token = DEFAULT_IMAGE_TOKEN
            if data_args.mm_use_im_start_end:
                replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
            sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)

    return sources


def preprocess_phi_3(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
    has_image: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_image:
        input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids
 
    targets = input_ids.clone()
    assert conv.sep_style == conversation_lib.SeparatorStyle.MPT

    # Mask targets
    sep = conv.sep + conv.roles[1]
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep)
        re_rounds = [conv.sep.join(rounds[:3])]  # system + user + gpt
        for conv_idx in range(3, len(rounds), 2):
            re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2]))    # user + gpt
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(re_rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            if has_image:
                round_len = len(tokenizer_image_token(rou, tokenizer))
                instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
            else:
                round_len = len(tokenizer(rou).input_ids)
                instruction_len = len(tokenizer(parts[0]).input_ids) - 2
            
            if i > 0:
                round_len -= 2
                instruction_len -= 2

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX
        
        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(
                    f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                    f" (ignored)"
                )
    return dict(
        input_ids=input_ids,
        labels=targets,
    )

def preprocess_llama_3(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
    has_image: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_image:
        input_ids = torch.stack(
            [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids

    targets = input_ids.clone()
    assert conv.sep_style == conversation_lib.SeparatorStyle.MPT

    # Mask targets
    sep = conv.sep + conv.roles[1]

    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep)
        re_rounds = [conv.sep.join(rounds[:3])]
        for conv_idx in range(3, len(rounds), 2):
            re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx + 2]))
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX

        for i, rou in enumerate(re_rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            if has_image:
                round_len = len(tokenizer_image_token(rou, tokenizer))
                instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
            else:
                round_len = len(tokenizer(rou).input_ids)
                instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            # if i > 0:
            #     round_len -= 1
            #     instruction_len -= 1
            
            target[cur_len: cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(
                    f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                    f" (ignored)"
                )
                
    return dict(
        input_ids=input_ids,
        labels=targets,
    )

def preprocess_llama_2(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
    has_image: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_image:
        input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids

    targets = input_ids.clone()

    assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2

    # Mask targets
    sep = "[/INST] "
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            if has_image:
                round_len = len(tokenizer_image_token(rou, tokenizer))
                instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
            else:
                round_len = len(tokenizer(rou).input_ids)
                instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(
                    f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                    f" (ignored)"
                )

    return dict(
        input_ids=input_ids,
        labels=targets,
    )


def preprocess_v1(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
    has_image: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_image:
        input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids

    targets = input_ids.clone()

    assert conv.sep_style == conversation_lib.SeparatorStyle.TWO

    # Mask targets
    sep = conv.sep + conv.roles[1] + ": "
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            if has_image:
                round_len = len(tokenizer_image_token(rou, tokenizer))
                instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
            else:
                round_len = len(tokenizer(rou).input_ids)
                instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14:
                round_len -= 1
                instruction_len -= 1

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(
                    f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                    f" (ignored)"
                )
    return dict(
        input_ids=input_ids,
        labels=targets,
    )

def preprocess_qwen(
        sources, 
        tokenizer: transformers.PreTrainedTokenizer, 
        has_image: bool = False, 
        system_message: str = "You are a helpful assistant."
    ) -> Dict:
    # roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}
    roles = {"human": "user", "gpt": "assistant"}

    # Add image tokens to tokenizer as a special tokens
    # Use a deepcopy of tokenizer so that we don't modify on the tokenizer
    tokenizer = copy.deepcopy(tokenizer)
    # When there is actually an image, we add the image tokens as a special token
    if has_image:
        tokenizer.add_tokens(["<image>"], special_tokens=True)

    image_token_index = tokenizer.convert_tokens_to_ids("<image>")
    im_start, im_end = tokenizer.additional_special_tokens_ids
    # unmask_tokens = ["<|im_start|>", "<|im_start|>", "\n"]
    unmask_tokens_idx =  [198, im_start, im_end]
    nl_tokens = tokenizer("\n").input_ids

    # Reset Qwen chat templates so that it won't include system message every time we apply
    chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
    tokenizer.chat_template = chat_template

    # _system = tokenizer("system").input_ids + nl_tokens
    # _user = tokenizer("user").input_ids + nl_tokens
    # _assistant = tokenizer("assistant").input_ids + nl_tokens

    # Apply prompt templates
    input_ids, targets = [], []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != roles["human"]:
            source = source[1:]

        input_id, target = [], []

        # New version, use apply chat template
        # Build system message for each sentence
        input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}])
        target += [IGNORE_INDEX] * len(input_id)

        for conv in source:
            # Make sure llava data can load
            try:
                role = conv["role"]
                content = conv["content"]
            except:
                role = conv["from"]
                content = conv["value"]

            role =  roles.get(role, role)
            
            conv = [{"role" : role, "content" : content}]
            encode_id = tokenizer.apply_chat_template(conv)
            input_id += encode_id
            if role in ["user", "system"]:
                target += [IGNORE_INDEX] * len(encode_id)
            else:
                target += encode_id
                    
        assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}"
        for idx, encode_id in enumerate(input_id):
            if encode_id in unmask_tokens_idx:
                target[idx] = encode_id
            if encode_id == image_token_index:
                input_id[idx] = IMAGE_TOKEN_INDEX
        input_ids.append(input_id)
        targets.append(target)
    input_ids = torch.tensor(input_ids, dtype=torch.long)
    targets = torch.tensor(targets, dtype=torch.long)

    return dict(
        input_ids=input_ids,  # tensor(bs x seq_len)
        labels=targets,  # tensor(bs x seq_len)
    )


def preprocess(
    sources: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
    has_image: bool = False
) -> Dict:
    """
    Given a list of sources, each is a conversation list. This transform:
    1. Add signal '### ' at the beginning each sentence, with end signal '\n';
    2. Concatenate conversations together;
    3. Tokenize the concatenated conversation;
    4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
    """
    if conversation_lib.default_conversation.version == "llama3":
        return preprocess_llama_3(sources, tokenizer, has_image=has_image)
    if conversation_lib.default_conversation.version == "phi3":
        return preprocess_phi_3(sources, tokenizer, has_image=has_image)
    if conversation_lib.default_conversation.version == "qwen":
        return preprocess_qwen(sources, tokenizer, has_image=has_image)
    if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2:
        return preprocess_llama_2(sources, tokenizer, has_image=has_image)
    if conversation_lib.default_conversation.version.startswith("v1"):
        return preprocess_v1(sources, tokenizer, has_image=has_image)
    # add end signal and concatenate together
    conversations = []
    for source in sources:
        header = f"{conversation_lib.default_conversation.system}\n\n"
        conversation = _add_speaker_and_signal(header, source)
        conversations.append(conversation)
    # tokenize conversations
    def get_tokenize_len(prompts):
        return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts]

    if has_image:
        input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
    else:
        conversations_tokenized = _tokenize_fn(conversations, tokenizer)
        input_ids = conversations_tokenized["input_ids"]

    targets = copy.deepcopy(input_ids)
    for target, source in zip(targets, sources):
        if has_image:
            tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source])
        else:
            tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"]
        speakers = [sentence["from"] for sentence in source]
        _mask_targets(target, tokenized_lens, speakers)

    return dict(input_ids=input_ids, labels=targets)


def read_jsonl(path):
    list_data_dict = []

    with open(path, "r") as file:
        for line in file:
            d = json.loads(line)
            list_data_dict.append(d)
    return list_data_dict


def _obtain_seg_texts(file_path):
    def _remove_specific_word(text, word_to_remove):
        import re
        tokens = re.findall(r'\b\w+\b|[,.]', text)
        result_tokens = []
        word_found = False

        for i, token in enumerate(tokens):
            if token == word_to_remove:
                if not word_found:
                    # Keep the first occurrence and mark it as found
                    result_tokens.append(token)
                    word_found = True
                else:
                    # Remove any preceding punctuation if it's just before this word
                    if i > 0 and tokens[i-1] in {',', '.'}:
                        result_tokens.pop()
            else:
                result_tokens.append(token)

        # Join tokens and clean up spaces before punctuation
        result_text = ' '.join(result_tokens)
        result_text = re.sub(r'\s([,.](?:\s|$))', r'\1', result_text)
        return result_text

    with open(file_path) as f:
        lines = f.readlines()
    
    seg_labels = {}
    for line in lines:
        key = line.split("<IMG>")[1].strip("\n")
        label = line.split("<IMG>")[2].strip("\n")
        label = _remove_specific_word(label, "wall")
        label = _remove_specific_word(label, "window")
        seg_labels[key] = label
    
    return seg_labels

from ola_vlm.ola_utils import PANOPTIC_QUESTIONS, SEMANTIC_QUESTIONS, INSTANCE_QUESTIONS
import random
def get_object_data_split(data_args):
    list_data_dict = []
    for bucket in ["train"]:
            panoptic_labels = _obtain_seg_texts(os.path.join(data_args.image_folder, "coco", "panoptic.txt"))
            semantic_labels = _obtain_seg_texts(os.path.join(data_args.image_folder, "coco", "semantic.txt"))
            instance_labels = _obtain_seg_texts(os.path.join(data_args.image_folder, "coco", "instance.txt"))

            for key in panoptic_labels.keys():
                assert key in semantic_labels.keys() and key in instance_labels.keys(), "Instance, semantic, and panoptic labels should have the same keys."
                prob_task = np.random.uniform(0,1.)
                question_prob = np.random.uniform(0,1.)
                if prob_task < 0.33:
                    answer = semantic_labels[key]
                    if question_prob > 0.90:
                        question = "What objects can be seen in the image?"
                    else:
                        question = random.choice(SEMANTIC_QUESTIONS)
                elif prob_task < 0.66:
                    answer = instance_labels[key]
                    if question_prob > 0.90:
                        question = "What objects can be seen in the image?"
                    else:
                        question = random.choice(INSTANCE_QUESTIONS)
                else:
                    answer = panoptic_labels[key]
                    if question_prob > 0.90:
                        question = "What objects can be seen in the image?"
                    else:
                        question = random.choice(PANOPTIC_QUESTIONS)

                question += "\n<image>"
                conversations = [ 
                        {
                            "from": "human", 
                            "value": question
                        }, 
                        {
                            "from": "gpt",
                            "value": answer
                        },
                    ]
                list_data_dict.append(
                        {
                            "conversations": conversations,
                            "image": "coco/" + bucket + "2017/" + key,
                        }
                    )
                    
    random.shuffle(list_data_dict)
    return list_data_dict

class LazySupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(self, data_path: str,
                 tokenizer: transformers.PreTrainedTokenizer,
                 data_args: DataArguments):
        super(LazySupervisedDataset, self).__init__()
        if "jsonl" in data_path:
            list_data_dict = read_jsonl(data_path)
        else:
            list_data_dict = json.load(open(data_path, "r"))

        rank0_print("Formatting inputs...Skip in lazy mode")
        self.tokenizer = tokenizer
        self.list_data_dict = list_data_dict
        self.data_args = data_args

        if data_args.use_cost:
            cost_list_data = get_object_data_split(data_args)
            self.list_data_dict.extend(cost_list_data)

    def __len__(self):
        return len(self.list_data_dict)

    @property
    def lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            img_tokens = 128 if 'image' in sample else 0
            length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
        return length_list

    @property
    def modality_lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
            cur_len = cur_len if 'image' in sample else -cur_len
            length_list.append(cur_len)
        return length_list

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        sources = self.list_data_dict[i]
        if isinstance(i, int):
            sources = [sources]
        assert len(sources) == 1, "Don't know why it is wrapped to a list"  # FIXME

        if 'image' in sources[0]:
            image_file = self.list_data_dict[i]['image']
            image_folder = self.data_args.image_folder
            processor = self.data_args.image_processor
            try:
                crop_size = self.data_args.image_processor.crop_size
            except:
                crop_size = self.data_args.image_processor.size

            try:
                image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
                pil_image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
            except Exception as e:
                from icecream import ic
                ic("----------------------------------")
                ic("OS ERROROROROROROROROROROOR")
                ic("OS ERROROROROROROROROROROOR")
                ic(image_file)
                ic(e)
                ic("OS ERROROROROROROROROROROOR")
                ic("OS ERROROROROROROROROROROOR")
                ic("===================================")
                return self.__getitem__(0)
            
            if self.data_args.image_aspect_ratio == 'pad':
                def expand2square(pil_img, background_color):
                    width, height = pil_img.size
                    if width == height:
                        return pil_img
                    elif width > height:
                        result = Image.new(pil_img.mode, (width, width), background_color)
                        result.paste(pil_img, (0, (width - height) // 2))
                        return result
                    else:
                        result = Image.new(pil_img.mode, (height, height), background_color)
                        result.paste(pil_img, ((height - width) // 2, 0))
                        return result
                image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
                image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
            else:
                image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
            sources = preprocess_multimodal(
                copy.deepcopy([e["conversations"] for e in sources]),
                self.data_args)
        else:
            sources = copy.deepcopy([e["conversations"] for e in sources])

        data_dict = preprocess(
            sources,
            self.tokenizer,
            has_image=('image' in self.list_data_dict[i]))
        if isinstance(i, int):
            data_dict = dict(input_ids=data_dict["input_ids"][0],
                             labels=data_dict["labels"][0])

        # image exist in the data
        if 'image' in self.list_data_dict[i]:
            data_dict['image'] = image
            data_dict['pil_image'] = pil_image
            data_dict['seg_mask'] = 1
            data_dict['depth_mask'] = 1
            data_dict['gen_mask'] = 1
        elif self.data_args.is_multimodal:
            try:
                crop_size = self.data_args.image_processor.crop_size
            except:
                crop_size = self.data_args.image_processor.size
            data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
            data_dict['pil_image'] = Image.new('RGB', (crop_size['width'], crop_size['height']), color='black')
            data_dict['seg_mask'] = 0
            data_dict['depth_mask'] = 0
            data_dict['gen_mask'] = 0
        
        return data_dict


@dataclass
class DataCollatorForSupervisedDataset(object):
    """Collate examples for supervised fine-tuning."""

    tokenizer: transformers.PreTrainedTokenizer

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        input_ids, labels = tuple([instance[key] for instance in instances]
                                  for key in ("input_ids", "labels"))
        input_ids = torch.nn.utils.rnn.pad_sequence(
            input_ids,
            batch_first=True,
            padding_value=self.tokenizer.pad_token_id)
        labels = torch.nn.utils.rnn.pad_sequence(labels,
                                                 batch_first=True,
                                                 padding_value=IGNORE_INDEX)
        input_ids = input_ids[:, :self.tokenizer.model_max_length]
        labels = labels[:, :self.tokenizer.model_max_length]
        batch = dict(
            input_ids=input_ids,
            labels=labels,
            attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
        )

        if 'image' in instances[0]:
            images = [instance['image'] for instance in instances]
            if all(x is not None and x.shape == images[0].shape for x in images):
                batch['images'] = torch.stack(images)
            else:
                batch['images'] = images
        
        if 'pil_image' in instances[0]:
            pil_images = [instance['pil_image'] for instance in instances]
            batch['pil_images'] = pil_images

            seg_mask = [instance['seg_mask'] for instance in instances]
            batch['seg_mask'] = torch.tensor(seg_mask)
            
            depth_mask = [instance['depth_mask'] for instance in instances]
            batch['depth_mask'] = torch.tensor(depth_mask)
            
            gen_mask = [instance['gen_mask'] for instance in instances]
            batch['gen_mask'] = torch.tensor(gen_mask)
        
        return batch


def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
                                data_args) -> Dict:
    """Make dataset and collator for supervised fine-tuning."""
    train_dataset = LazySupervisedDataset(tokenizer=tokenizer,
                                data_path=data_args.data_path,
                                data_args=data_args)
    data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
    return dict(train_dataset=train_dataset,
                eval_dataset=None,
                data_collator=data_collator)

def add_special_tokens(
    special_tokens: List,
    tokenizer: transformers.PreTrainedTokenizer,
    model: transformers.PreTrainedModel,
):
    """Resize tokenizer and embedding.

    Initialize new token embeddings to follow the distribution of existing embeddings.
    """
    # Add special tokens to tokenizer
    num_new_tokens = tokenizer.add_tokens(special_tokens, special_tokens=True)
    # Resize the token embeddings in the model
    model.resize_token_embeddings(len(tokenizer))

    if num_new_tokens > 0:
        # Get input embeddings and compute global mean and std over all dimensions
        input_embeddings = model.get_input_embeddings().weight.data
        input_mean, input_std = input_embeddings.mean(), input_embeddings.std()

        # Initialize new input embeddings with the same distribution as existing ones
        input_embeddings[-num_new_tokens:] = torch.nn.init.normal_(
            torch.empty(num_new_tokens, input_embeddings.size(1)),
            mean=input_mean.item(),
            std=input_std.item()
        )

        # Check if model has output embeddings and initialize them similarly
        if model.get_output_embeddings() is not None:
            output_embeddings = model.get_output_embeddings().weight.data
            output_mean, output_std = output_embeddings.mean(), output_embeddings.std()

            # Initialize new output embeddings with the same distribution as existing ones
            output_embeddings[-num_new_tokens:] = torch.nn.init.normal_(
                torch.empty(num_new_tokens, output_embeddings.size(1)),
                mean=output_mean.item(),
                std=output_std.item()
            )
            
def train(attn_implementation=None):
    global local_rank

    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    local_rank = training_args.local_rank
    compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))

    bnb_model_from_pretrained_args = {}
    if training_args.bits in [4, 8]:
        from transformers import BitsAndBytesConfig
        bnb_model_from_pretrained_args.update(dict(
            device_map={"": training_args.device},
            load_in_4bit=training_args.bits == 4,
            load_in_8bit=training_args.bits == 8,
            quantization_config=BitsAndBytesConfig(
                load_in_4bit=training_args.bits == 4,
                load_in_8bit=training_args.bits == 8,
                llm_int8_skip_modules=["mm_projector"],
                llm_int8_threshold=6.0,
                llm_int8_has_fp16_weight=False,
                bnb_4bit_compute_dtype=compute_dtype,
                bnb_4bit_use_double_quant=training_args.double_quant,
                bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
            )
        ))

    if model_args.vision_tower is not None:
        if 'phi' in model_args.model_name_or_path.lower():
            model = OlaLlavaPhi3ForCausalLM.from_pretrained(
                model_args.model_name_or_path,
                cache_dir=training_args.cache_dir,
                attn_implementation=attn_implementation,
                torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
                **bnb_model_from_pretrained_args
            )
        elif 'qwen' in model_args.model_name_or_path.lower():
            model = OlaLlavaQwenForCausalLM.from_pretrained(
                model_args.model_name_or_path,
                cache_dir=training_args.cache_dir,
                attn_implementation=attn_implementation,
                torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
                **bnb_model_from_pretrained_args
            )
        else:
            model = OlaLlavaLlamaForCausalLM.from_pretrained(
                model_args.model_name_or_path,
                cache_dir=training_args.cache_dir,
                attn_implementation=attn_implementation,
                torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
                **bnb_model_from_pretrained_args
            )
    else:
        if 'phi' in model_args.model_name_or_path.lower():
            model = transformers.Phi3ForCausalLM.from_pretrained(
                model_args.model_name_or_path,
                cache_dir=training_args.cache_dir,
                attn_implementation=attn_implementation,
                torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
                **bnb_model_from_pretrained_args
            )
        elif 'qwen2' in model_args.model_name_or_path.lower():
            model = transformers.Qwen2ForCausalLM.from_pretrained(
                model_args.model_name_or_path,
                cache_dir=training_args.cache_dir,
                attn_implementation=attn_implementation,
                torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
                **bnb_model_from_pretrained_args
            )
        else:
            model = transformers.LlamaForCausalLM.from_pretrained(
                model_args.model_name_or_path,
                cache_dir=training_args.cache_dir,
                attn_implementation=attn_implementation,
                torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
                **bnb_model_from_pretrained_args
            )
    model.config.use_cache = False

    if model_args.freeze_backbone:
        model.model.requires_grad_(False)

    if training_args.bits in [4, 8]:
        from peft import prepare_model_for_kbit_training
        model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
        model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)

    if training_args.gradient_checkpointing:
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:
            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)
            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

    if training_args.lora_enable:
        from peft import LoraConfig, get_peft_model
        lora_config = LoraConfig(
            r=training_args.lora_r,
            lora_alpha=training_args.lora_alpha,
            target_modules=find_all_linear_names(model),
            lora_dropout=training_args.lora_dropout,
            bias=training_args.lora_bias,
            task_type="CAUSAL_LM",
        )
        if training_args.bits == 16:
            if training_args.bf16:
                model.to(torch.bfloat16)
            if training_args.fp16:
                model.to(torch.float16)
        rank0_print("Adding LoRA adapters...")
        model = get_peft_model(model, lora_config)
    
    if "qwen" in model_args.model_name_or_path.lower():
        tokenizer = transformers.AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right")
    else:
        tokenizer = transformers.AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            model_max_length=training_args.model_max_length,
            padding_side="right",
            use_fast=False,
        )

    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.unk_token
    if tokenizer.pad_token_id is None:
        smart_tokenizer_and_embedding_resize(
                special_tokens_dict=dict(pad_token="<pad>"),
                tokenizer=tokenizer,
                model=model,
            )

    if model_args.version in conversation_lib.conv_templates:
        conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
    else:
        conversation_lib.default_conversation = conversation_lib.conv_templates["llava_phi_3"]

    if "sherlock" in model_args.model_name_or_path:
        vision_tower = model.get_vision_tower()

        if vision_tower is None:
            model.get_model().initialize_vision_modules(
                model_args=model_args,
                fsdp=training_args.fsdp
            )
            vision_tower = model.get_vision_tower()

        if not vision_tower.is_loaded:
            vision_tower.load_model()
        vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)

    elif model_args.vision_tower is not None:
        model.get_model().initialize_vision_modules(
            model_args=model_args,
            fsdp=training_args.fsdp
        )
        
        vision_tower = model.get_vision_tower()
        vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)

    data_args.image_processor = vision_tower.image_processor
    data_args.is_multimodal = True

    model.config.image_grid_pinpoints = [[336,672], [672,336], [672,672], [1008,336], [336,1008]]        
    model.config.image_aspect_ratio = data_args.image_aspect_ratio
    model.config.tokenizer_padding_side = tokenizer.padding_side
    model.config.tokenizer_model_max_length = tokenizer.model_max_length

    model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
    if model_args.tune_mm_mlp_adapter:
        model.requires_grad_(False)
        for p in model.get_model().mm_projector.parameters():
            p.requires_grad = True

    model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
    if training_args.freeze_mm_mlp_adapter:
        for p in model.get_model().mm_projector.parameters():
            p.requires_grad = False

    if training_args.bits in [4, 8]:
        model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)

    model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
    model.config.mm_projector_lr = training_args.mm_projector_lr
    training_args.use_im_start_end = model_args.mm_use_im_start_end
    model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
    model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)

    if model_args.unfreeze_mm_vision_tower:
        model.requires_grad_(False)
        for p in model.get_model().mm_projector.parameters():
            p.requires_grad = True
        model.get_model().vision_tower.requires_grad_(True)
    else:
        model.get_model().vision_tower.requires_grad_(False)

    model.config.use_s2 = model_args.use_s2
    model.config.s2_scales = model_args.s2_scales

    if "sherlock" not in model_args.model_name_or_path.split("/")[-1]:
        aux_mode = model_args.mode
        model.config.aux_mode = model_args.mode
        model.config.contrastive_loss_weight = model_args.contrastive_loss_weight
        model.config.num_task_tokens = model_args.num_task_tokens
        model.config.task_token_format = model_args.task_token_format
        model.config.pass_text_to_aux = model_args.pass_text_to_aux
        model.config.use_contrastive = model_args.use_contrastive
        model.config.use_ce = model_args.use_ce

        layer_indices = model_args.layer_indices

        pattern = r'[a-zA-Z]\d+(?:-\d+)?'

        import re
        # Extract matching substrings from each string
        matches = re.findall(pattern, layer_indices)

        depth_layer_indices = "0"
        seg_layer_indices = "0"
        img_layer_indices = "0"

        for match in matches:
            if match.startswith('d'):
                depth_layer_indices = match[1:]
            elif match.startswith('s'):
                seg_layer_indices = match[1:]
            elif match.startswith('g'):
                img_layer_indices = match[1:]
        
        loss_weights = model_args.loss_weights

        pattern = r'[a-zA-Z]\d+\.\d+'
        matches = re.findall(pattern, loss_weights)

        img_loss_weight = 0.5
        seg_loss_weight = 0.5
        depth_loss_weight = 0.5

        for match in matches:
            if match.startswith('d'):
                depth_loss_weight = float(match[1:])
            elif match.startswith('s'):
                seg_loss_weight = float(match[1:])
            elif match.startswith('g'):
                img_loss_weight = float(match[1:])
        
        model.config.image_gen = {
            "depth": model_args.img_head_depth,
            "dim_head": model_args.img_head_dim_head,
            "num_heads": model_args.img_head_num_heads,
            "num_tokens": model_args.img_head_num_tokens,
            "output_dim": model_args.img_head_output_dim,
            "ff_mult": model_args.img_head_ff_mult,
            "img_layer_indices": img_layer_indices,
            "img_loss_weight": img_loss_weight,
        }
        model.config.image_generator = model_args.image_generator

        model.config.image_seg = {
            "depth": model_args.seg_head_depth,
            "dim_head": model_args.seg_head_dim_head,
            "num_heads": model_args.seg_head_num_heads,
            "num_tokens": model_args.seg_head_num_tokens,
            "output_dim": model_args.seg_head_output_dim,
            "ff_mult": model_args.seg_head_ff_mult,
            "seg_layer_indices": seg_layer_indices,
            "seg_loss_weight": seg_loss_weight,
            "seg_teacher": model_args.seg_teacher,
        }
        model.config.image_segmentor = model_args.image_segmentor

        model.config.image_depth = {
            "depth": model_args.depth_head_depth,
            "dim_head": model_args.depth_head_dim_head,
            "num_heads": model_args.depth_head_num_heads,
            "num_tokens": model_args.depth_head_num_tokens,
            "output_dim": model_args.depth_head_output_dim,
            "ff_mult": model_args.depth_head_ff_mult,
            "depth_layer_indices": depth_layer_indices,
            "depth_loss_weight": depth_loss_weight,
            "use_intermediate_depth": model_args.use_intermediate_depth,
        }
        model.config.depth_estimator = model_args.depth_estimator
        model.config.sample_tokens = model_args.sample_tokens
        num_task_tokens = model_args.num_task_tokens

        if model_args.use_dinov2:
            model.config.dinov2_feats = {
                "model": model_args.dinov2_model,
                "dinov2_layer_indices": model_args.dinov2_layers,
                "dim": model_args.dinov2_dim,
                "dinov2_loss_weight": model_args.dinov2_loss_weight,
            }

        model.config.num_task_tokens = model_args.num_task_tokens
        model.config.task_token_format = model_args.task_token_format
        if model_args.num_task_tokens > 0:
            if model_args.task_token_format == "text":
                if "depth" in aux_mode:
                    special_depth_tokens = [f"<depth_{i}>" for i in range(num_task_tokens)]
                    special_depth_tokens_str = "".join(special_depth_tokens)
                    add_special_tokens(
                        special_tokens=special_depth_tokens,
                        tokenizer=tokenizer,
                        model=model,
                    )
                    model.config.depth_tokens = tokenizer(special_depth_tokens_str).input_ids[1:]
                if "seg" in aux_mode:
                    special_seg_tokens = [f"<seg_{i}>" for i in range(num_task_tokens)]
                    special_seg_tokens_str = "".join(special_seg_tokens)
                    add_special_tokens(
                        special_tokens=special_seg_tokens,
                        tokenizer=tokenizer,
                        model=model,
                    )
                    model.config.seg_tokens = tokenizer(special_seg_tokens_str).input_ids[1:]
                if "gen" in aux_mode:
                    special_gen_tokens = [f"<gen_{i}>" for i in range(num_task_tokens)]
                    special_gen_tokens_str = "".join(special_gen_tokens)
                    add_special_tokens(
                        special_tokens=special_gen_tokens,
                        tokenizer=tokenizer,
                        model=model,
                    )
                    model.config.gen_tokens = tokenizer(special_gen_tokens_str).input_ids[1:]

            model.get_model().initialize_special_tokens(model.config)

        model.init_heads(model.config)
        model.init_target_models(model.config)
    elif model_args.unfreeze_whole_model:
        model.requires_grad_(True)
    elif model_args.unfreeze_mm_vision_tower:
        if "depth" in model_args.mode:
            for p in model.image_depth_heads.parameters():
                p.requires_grad = True
        if "gen" in model_args.mode:
            for p in model.image_gen_heads.parameters():
                p.requires_grad = True
        if "seg" in model_args.mode:
            for p in model.image_seg_heads.parameters():
                p.requires_grad = True
        if "emb" in model.config.task_token_format and model.config.num_task_tokens > 0:
            if "gen" in aux_mode:
                model.get_model().special_gen_tokens.requires_grad_(True)
            if "seg" in aux_mode:
                model.get_model().special_seg_tokens.requires_grad_(True)
            if "depth" in aux_mode:
                model.get_model().special_depth_tokens.requires_grad_(True)
    elif not model_args.tune_mm_mlp_adapter:
         if "emb" in model.config.task_token_format and model.config.num_task_tokens > 0:
            if "gen" in model.config.aux_mode:
                model.get_model().special_gen_tokens.requires_grad_(False)
            if "seg" in model.config.aux_mode:
                model.get_model().special_seg_tokens.requires_grad_(False)
            if "depth" in model.config.aux_mode:
                model.get_model().special_depth_tokens.requires_grad_(False)

    
    loss_weights = model_args.loss_weights

    import re
    pattern = r'[a-zA-Z]\d+\.\d+'
    matches = re.findall(pattern, loss_weights)

    img_loss_weight = 0.5
    seg_loss_weight = 0.5
    depth_loss_weight = 0.5

    for match in matches:
        if match.startswith('d'):
            depth_loss_weight = float(match[1:])
        elif match.startswith('s'):
            seg_loss_weight = float(match[1:])
        elif match.startswith('g'):
            img_loss_weight = float(match[1:])
    
    model.config.image_seg["seg_loss_weight"] = seg_loss_weight
    model.config.image_gen["img_loss_weight"] = img_loss_weight
    model.config.image_depth["depth_loss_weight"] = depth_loss_weight
    
    if model_args.use_reference_model:
        model.init_reference_model()
    
    for name, p in model.named_parameters():
        if "sam." in name or "da_v2_head." in name or "dinov2_model." in name or "gen_encoder." in name or "dav2_backbone." in name or "oneformer." in name:
            p.requires_grad = False

    model.img_gen_loss_weight = img_loss_weight
    model.img_seg_loss_weight = seg_loss_weight
    model.img_depth_loss_weight = depth_loss_weight

    if model_args.num_task_tokens > 0:
        if "emb" in model.config.task_token_format and model_args.freeze_task_token:
            if "gen" in model.config.aux_mode:
                model.get_model().special_gen_tokens.requires_grad_(False)
            if "seg" in model.config.aux_mode:
                model.get_model().special_seg_tokens.requires_grad_(False)
            if "depth" in model.config.aux_mode:
                model.get_model().special_depth_tokens.requires_grad_(False)
        else:
            if "gen" in model.config.aux_mode:
                model.get_model().special_gen_tokens.requires_grad_(True)
            if "seg" in model.config.aux_mode:
                model.get_model().special_seg_tokens.requires_grad_(True)
            if "depth" in model.config.aux_mode:
                model.get_model().special_depth_tokens.requires_grad_(True)

    if model_args.freeze_aux_heads:
        model.get_model().vision_tower.requires_grad_(False)
        if "depth" in model.config.aux_mode:
            for p in model.image_depth_heads.parameters():
                p.requires_grad = False
            model.depth_logit_scale.requires_grad_(False)
        if "gen" in model.config.aux_mode:
            for p in model.image_gen_heads.parameters():
                p.requires_grad = False
            model.gen_logit_scale.requires_grad_(False)
        if "seg" in model.config.aux_mode:
            for p in model.image_seg_heads.parameters():
                p.requires_grad = False
            model.seg_logit_scale.requires_grad_(False)
        
    import torch.distributed as dist
    from icecream import ic
    if dist.get_rank() == 0:
        gen_heads = 0
        depth_heads = 0
        seg_heads = 0
        for n, p in model.named_parameters():
            if p.requires_grad:
                if "gen_head" in n:
                    gen_heads += p.numel()
                elif "depth_head" in n:
                    depth_heads += p.numel()
                elif "seg_head" in n:
                    seg_heads += p.numel()
                ic(n)
        ic(depth_heads, gen_heads, seg_heads)

    if training_args.bits in [4, 8]:
        from peft.tuners.lora import LoraLayer
        for name, module in model.named_modules():
            if isinstance(module, LoraLayer):
                if training_args.bf16:
                    module = module.to(torch.bfloat16)
            if 'norm' in name:
                module = module.to(torch.float32)
            if 'lm_head' in name or 'embed_tokens' in name:
                if hasattr(module, 'weight'):
                    if training_args.bf16 and module.weight.dtype == torch.float32:
                        module = module.to(torch.bfloat16)

    data_module = make_supervised_data_module(tokenizer=tokenizer,
                                              data_args=data_args)
    trainer = LLaVATrainer(model=model,
                    tokenizer=tokenizer,
                    args=training_args,
                    **data_module)
    
    print('starting training...', local_rank)

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    model.config.use_cache = True

    if training_args.lora_enable:
        state_dict = get_peft_state_maybe_zero_3(
            model.named_parameters(), training_args.lora_bias
        )
        non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
            model.named_parameters()
        )
        if training_args.local_rank == 0 or training_args.local_rank == -1:
            model.config.save_pretrained(training_args.output_dir)
            model.save_pretrained(training_args.output_dir, state_dict=state_dict)
            torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
    else:
        safe_save_model_for_hf_trainer(trainer=trainer,
                                       output_dir=training_args.output_dir)


if __name__ == "__main__":
    train()