Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import re | |
from ola_vlm.model.multimodal_projector.resampler import Resampler | |
class IdentityMap(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, *args, **kwargs): | |
return x | |
def config(self): | |
return {"mm_projector_type": 'identity'} | |
class SimpleResBlock(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.pre_norm = nn.LayerNorm(channels) | |
self.proj = nn.Sequential( | |
nn.Linear(channels, channels), | |
nn.GELU(), | |
nn.Linear(channels, channels) | |
) | |
def forward(self, x): | |
x = self.pre_norm(x) | |
return x + self.proj(x) | |
def build_resampler(config, num_queries=None): | |
return Resampler( | |
dim=config["probe_output_dim"], | |
depth=config["probe_depth"], | |
dim_head=config["probe_dim_head"], | |
heads=config["probe_num_heads"], | |
num_queries=config["num_queries"] if num_queries is None else num_queries, | |
embedding_dim=config.hidden_size, | |
output_dim=config["probe_output_dim"], | |
ff_mult=config["probe_ff_mult"], | |
) | |
def build_vision_projector(config, delay_load=False, **kwargs): | |
projector_type = getattr(config, 'mm_projector_type', 'linear') | |
if projector_type == 'linear': | |
return nn.Linear(config.mm_hidden_size, config.hidden_size) | |
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) | |
if mlp_gelu_match: | |
mlp_depth = int(mlp_gelu_match.group(1)) | |
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] | |
for _ in range(1, mlp_depth): | |
modules.append(nn.GELU()) | |
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) | |
return nn.Sequential(*modules) | |
if projector_type == 'identity': | |
return IdentityMap() | |
raise ValueError(f'Unknown projector type: {projector_type}') | |