Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import Sampler | |
from transformers import Trainer | |
from transformers.trainer import ( | |
is_sagemaker_mp_enabled, | |
get_parameter_names, | |
has_length, | |
ALL_LAYERNORM_LAYERS, | |
logger, | |
_is_peft_model, | |
) | |
from typing import List, Optional | |
import math | |
import os | |
import shutil | |
import sys | |
import time | |
from typing import List, Optional | |
TRAINER_STATE_NAME = "trainer_state.json" | |
# Integrations must be imported before ML frameworks: | |
# isort: off | |
from transformers.integrations import ( | |
hp_params, | |
) | |
# isort: on | |
import torch | |
import torch.distributed as dist | |
from packaging import version | |
from torch import nn | |
from torch.utils.data import RandomSampler | |
from transformers import __version__ | |
from transformers.integrations.deepspeed import deepspeed_init, deepspeed_load_checkpoint | |
from transformers.pytorch_utils import ( | |
ALL_LAYERNORM_LAYERS, | |
) | |
from transformers.debug_utils import DebugOption, DebugUnderflowOverflow | |
from transformers.trainer_callback import ( | |
DefaultFlowCallback, | |
ExportableState, | |
ProgressCallback, | |
TrainerState, | |
) | |
from transformers.trainer_pt_utils import ( | |
LengthGroupedSampler, | |
get_model_param_count, | |
get_parameter_names, | |
) | |
from transformers.trainer_utils import ( | |
HPSearchBackend, | |
TrainOutput, | |
has_length, | |
speed_metrics, | |
) | |
from transformers.training_args import OptimizerNames, ParallelMode, TrainingArguments | |
from transformers.utils import ( | |
is_accelerate_available, | |
is_apex_available, | |
is_datasets_available, | |
is_sagemaker_mp_enabled, | |
is_torch_xla_available, | |
) | |
DEFAULT_CALLBACKS = [DefaultFlowCallback] | |
DEFAULT_PROGRESS_CALLBACK = ProgressCallback | |
if is_apex_available(): | |
from apex import amp | |
if is_datasets_available(): | |
import datasets | |
IS_XLA_FSDPV2_POST_2_2 = False | |
IS_SAGEMAKER_MP_POST_1_10 = False | |
if is_accelerate_available(): | |
from accelerate import Accelerator, skip_first_batches | |
from accelerate import __version__ as accelerate_version | |
from accelerate.utils import ( | |
DistributedType, | |
) | |
DATA_SAMPLERS = [RandomSampler] | |
if version.parse(accelerate_version) > version.parse("0.23.0"): | |
from accelerate.data_loader import SeedableRandomSampler | |
DATA_SAMPLERS += [SeedableRandomSampler] | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
print(name, 'no ignore status') | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): | |
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} | |
to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()} | |
return to_return | |
def split_to_even_chunks(indices, lengths, num_chunks): | |
""" | |
Split a list of indices into `chunks` chunks of roughly equal lengths. | |
""" | |
if len(indices) % num_chunks != 0: | |
return [indices[i::num_chunks] for i in range(num_chunks)] | |
num_indices_per_chunk = len(indices) // num_chunks | |
chunks = [[] for _ in range(num_chunks)] | |
chunks_lengths = [0 for _ in range(num_chunks)] | |
for index in indices: | |
shortest_chunk = chunks_lengths.index(min(chunks_lengths)) | |
chunks[shortest_chunk].append(index) | |
chunks_lengths[shortest_chunk] += lengths[index] | |
if len(chunks[shortest_chunk]) == num_indices_per_chunk: | |
chunks_lengths[shortest_chunk] = float("inf") | |
return chunks | |
def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None): | |
# We need to use torch for the random part as a distributed sampler will set the random seed for torch. | |
assert all(l != 0 for l in lengths), "Should not have zero length." | |
if all(l > 0 for l in lengths) or all(l < 0 for l in lengths): | |
# all samples are in the same modality | |
return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator) | |
mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0]) | |
lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0]) | |
mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)] | |
lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)] | |
megabatch_size = world_size * batch_size | |
mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)] | |
lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)] | |
last_mm = mm_megabatches[-1] | |
last_lang = lang_megabatches[-1] | |
additional_batch = last_mm + last_lang | |
megabatches = mm_megabatches[:-1] + lang_megabatches[:-1] | |
megabatch_indices = torch.randperm(len(megabatches), generator=generator) | |
megabatches = [megabatches[i] for i in megabatch_indices] | |
if len(additional_batch) > 0: | |
megabatches.append(sorted(additional_batch)) | |
return [i for megabatch in megabatches for i in megabatch] | |
def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True): | |
# We need to use torch for the random part as a distributed sampler will set the random seed for torch. | |
indices = torch.randperm(len(lengths), generator=generator) | |
megabatch_size = world_size * batch_size | |
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)] | |
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches] | |
megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches] | |
return [i for megabatch in megabatches for batch in megabatch for i in batch] | |
class LengthGroupedSampler(Sampler): | |
r""" | |
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while | |
keeping a bit of randomness. | |
""" | |
def __init__( | |
self, | |
batch_size: int, | |
world_size: int, | |
lengths: Optional[List[int]] = None, | |
generator=None, | |
group_by_modality: bool = False, | |
): | |
if lengths is None: | |
raise ValueError("Lengths must be provided.") | |
self.batch_size = batch_size | |
self.world_size = world_size | |
self.lengths = lengths | |
self.generator = generator | |
self.group_by_modality = group_by_modality | |
def __len__(self): | |
return len(self.lengths) | |
def __iter__(self): | |
if self.group_by_modality: | |
indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator) | |
else: | |
indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator) | |
return iter(indices) | |
class LLaVATrainer(Trainer): | |
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: | |
if self.train_dataset is None or not has_length(self.train_dataset): | |
return None | |
if self.args.group_by_modality_length: | |
lengths = self.train_dataset.modality_lengths | |
return LengthGroupedSampler( | |
self.args.train_batch_size, | |
world_size=self.args.world_size * self.args.gradient_accumulation_steps, | |
lengths=lengths, | |
group_by_modality=True, | |
) | |
else: | |
return super()._get_train_sampler() | |
def ocreate_accelerator_and_postprocess(self): | |
grad_acc_kwargs = {} | |
if is_accelerate_available("0.28.0") and self.args.accelerator_config.gradient_accumulation_kwargs is not None: | |
grad_acc_kwargs = self.args.accelerator_config.gradient_accumulation_kwargs | |
# check if num_steps is attempted to be passed in gradient_accumulation_kwargs | |
if "num_steps" in grad_acc_kwargs and self.args.gradient_accumulation_steps > 1: | |
# raise because we do not know which setting is intended. | |
raise ValueError( | |
"The `AcceleratorConfig`'s `num_steps` is set but `gradient_accumulation_steps` is greater than 1 in the passed `TrainingArguments`" | |
"If using the passed `AcceleratorConfig` is desired, do not set the `TrainingArguments` `gradient_accumulation_steps`." | |
) | |
elif "num_steps" not in grad_acc_kwargs: | |
# take the gradient_accumulation_steps setting from TrainingArguments. | |
grad_acc_kwargs["num_steps"] = self.args.gradient_accumulation_steps | |
grad_acc_kwargs["sync_with_dataloader"] = False | |
from accelerate.utils import ( | |
GradientAccumulationPlugin, | |
) | |
gradient_accumulation_plugin = GradientAccumulationPlugin(**grad_acc_kwargs) | |
accelerator_config = self.args.accelerator_config.to_dict() | |
if is_accelerate_available("0.28.0"): | |
from accelerate.utils import DataLoaderConfiguration | |
if is_accelerate_available("0.28.0"): | |
dataloader_config = DataLoaderConfiguration( | |
split_batches=accelerator_config.pop("split_batches"), | |
dispatch_batches=accelerator_config.pop("dispatch_batches"), | |
even_batches=accelerator_config.pop("even_batches"), | |
use_seedable_sampler=accelerator_config.pop("use_seedable_sampler"), | |
) | |
non_blocking = accelerator_config.pop("non_blocking") | |
if not is_accelerate_available("0.30.0"): | |
if non_blocking: | |
raise ImportError( | |
"`non_blocking` is only supported in accelerate v0.30.0 and above. Please upgrade accelerate to use this feature." | |
) | |
else: | |
if non_blocking and not self.args.dataloader_pin_memory: | |
logger.warning( | |
"`non_blocking` is enabled but `dataloader_pin_memory` is not. For the best performance, it's recommended to enable both." | |
) | |
dataloader_config.non_blocking = non_blocking | |
# this would have been updated above, no need for it anymore | |
accelerator_config.pop("gradient_accumulation_kwargs") | |
args = { | |
"deepspeed_plugin": self.args.deepspeed_plugin, | |
"gradient_accumulation_plugin": gradient_accumulation_plugin, | |
} | |
if is_accelerate_available("0.28.0"): | |
args["dataloader_config"] = dataloader_config | |
else: | |
args.update(accelerator_config) | |
# create accelerator object | |
from .acc import Accelerator | |
self.accelerator = Accelerator(**args) | |
# some Trainer classes need to use `gather` instead of `gather_for_metrics`, thus we store a flag | |
self.gather_function = self.accelerator.gather_for_metrics | |
# deepspeed and accelerate flags covering both trainer args and accelerate launcher | |
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None | |
self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None | |
# post accelerator creation setup | |
if self.is_fsdp_enabled: | |
fsdp_plugin = self.accelerator.state.fsdp_plugin | |
fsdp_plugin.limit_all_gathers = self.args.fsdp_config.get( | |
"limit_all_gathers", fsdp_plugin.limit_all_gathers | |
) | |
if is_accelerate_available("0.23.0"): | |
fsdp_plugin.activation_checkpointing = self.args.fsdp_config.get( | |
"activation_checkpointing", fsdp_plugin.activation_checkpointing | |
) | |
if fsdp_plugin.activation_checkpointing and self.args.gradient_checkpointing: | |
raise ValueError( | |
"The activation_checkpointing in FSDP config and the gradient_checkpointing in training arg " | |
"can't be set to True simultaneously. Please use FSDP's activation_checkpointing logic " | |
"when using FSDP." | |
) | |
if self.is_deepspeed_enabled and getattr(self.args, "hf_deepspeed_config", None) is None: | |
self.propagate_args_to_deepspeed() | |
# `save_only_model` can't be used with DeepSpeed/FSDP along with `load_best_model_at_end` | |
if ( | |
self.args.save_only_model | |
and (self.is_deepspeed_enabled or self.is_fsdp_enabled) | |
and self.args.load_best_model_at_end | |
): | |
wrapper = "DeepSpeed" if self.is_deepspeed_enabled else "FSDP" | |
raise ValueError(f"{wrapper} can't be used with `save_only_model` along with `load_best_model_at_end`.") | |
# `auto_find_batch_size` isn't yet supported with DeepSpeed/FSDP | |
if (self.is_deepspeed_enabled or self.is_fsdp_enabled) and self.args.auto_find_batch_size: | |
wrapper = "DeepSpeed" if self.is_deepspeed_enabled else "FSDP" | |
raise NotImplementedError(f"`{wrapper}` doesn't support `auto_find_batch_size`.") | |
def otraining_step(self, model: nn.Module, inputs) -> torch.Tensor: | |
""" | |
Perform a training step on a batch of inputs. | |
Subclass and override to inject custom behavior. | |
Args: | |
model (`nn.Module`): | |
The model to train. | |
inputs (`Dict[str, Union[torch.Tensor, Any]]`): | |
The inputs and targets of the model. | |
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the | |
argument `labels`. Check your model's documentation for all accepted arguments. | |
Return: | |
`torch.Tensor`: The tensor with training loss on this batch. | |
""" | |
model.train() | |
inputs = self._prepare_inputs(inputs) | |
from icecream import ic | |
ic("inputs_prepared") | |
with self.compute_loss_context_manager(): | |
loss = self.compute_loss(model, inputs) | |
from icecream import ic | |
ic("loss_computed") | |
del inputs | |
torch.cuda.empty_cache() | |
if self.args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel training | |
if self.use_apex: | |
with amp.scale_loss(loss, self.optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
self.accelerator.backward(loss) | |
return loss.detach() / self.args.gradient_accumulation_steps | |
def o_inner_training_loop( | |
self, batch_size=None, args=None, resume_from_checkpoint=None, trial=None, ignore_keys_for_eval=None | |
): | |
from icecream import ic | |
ic("INNER TRAINING") | |
self.accelerator.free_memory() | |
self._train_batch_size = batch_size | |
if self.args.auto_find_batch_size: | |
if self.state.train_batch_size != self._train_batch_size: | |
from accelerate.utils import release_memory | |
(self.model_wrapped,) = release_memory(self.model_wrapped) | |
self.model_wrapped = self.model | |
# Check for DeepSpeed *after* the intial pass and modify the config | |
if self.is_deepspeed_enabled: | |
# Temporarily unset `self.args.train_batch_size` | |
original_bs = self.args.per_device_train_batch_size | |
self.args.per_device_train_batch_size = self._train_batch_size // max(1, self.args.n_gpu) | |
self.propagate_args_to_deepspeed(True) | |
self.args.per_device_train_batch_size = original_bs | |
self.state.train_batch_size = self._train_batch_size | |
logger.debug(f"Currently training with a batch size of: {self._train_batch_size}") | |
# Data loader and number of training steps | |
train_dataloader = self.get_train_dataloader() | |
if self.is_fsdp_xla_v2_enabled: | |
train_dataloader = tpu_spmd_dataloader(train_dataloader) | |
# Setting up training control variables: | |
# number of training epochs: num_train_epochs | |
# number of training steps per epoch: num_update_steps_per_epoch | |
# total number of training steps to execute: max_steps | |
total_train_batch_size = self._train_batch_size * args.gradient_accumulation_steps * args.world_size | |
len_dataloader = None | |
num_train_tokens = None | |
if has_length(train_dataloader): | |
len_dataloader = len(train_dataloader) | |
num_update_steps_per_epoch = len_dataloader // args.gradient_accumulation_steps | |
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) | |
num_examples = self.num_examples(train_dataloader) | |
if args.max_steps > 0: | |
max_steps = args.max_steps | |
num_train_epochs = args.max_steps // num_update_steps_per_epoch + int( | |
args.max_steps % num_update_steps_per_epoch > 0 | |
) | |
# May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's | |
# the best we can do. | |
num_train_samples = args.max_steps * total_train_batch_size | |
if args.include_tokens_per_second: | |
num_train_tokens = ( | |
self.num_tokens(train_dataloader, args.max_steps) * args.gradient_accumulation_steps | |
) | |
else: | |
max_steps = math.ceil(args.num_train_epochs * num_update_steps_per_epoch) | |
num_train_epochs = math.ceil(args.num_train_epochs) | |
num_train_samples = self.num_examples(train_dataloader) * args.num_train_epochs | |
if args.include_tokens_per_second: | |
num_train_tokens = self.num_tokens(train_dataloader) * args.num_train_epochs | |
elif args.max_steps > 0: # Rely on max_steps when dataloader does not have a working size | |
max_steps = args.max_steps | |
# Setting a very large number of epochs so we go as many times as necessary over the iterator. | |
num_train_epochs = sys.maxsize | |
num_update_steps_per_epoch = max_steps | |
num_examples = total_train_batch_size * args.max_steps | |
num_train_samples = args.max_steps * total_train_batch_size | |
if args.include_tokens_per_second: | |
num_train_tokens = self.num_tokens(train_dataloader, args.max_steps) * args.gradient_accumulation_steps | |
else: | |
raise ValueError( | |
"args.max_steps must be set to a positive value if dataloader does not have a length, was" | |
f" {args.max_steps}" | |
) | |
if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug: | |
if self.args.n_gpu > 1: | |
# nn.DataParallel(model) replicates the model, creating new variables and module | |
# references registered here no longer work on other gpus, breaking the module | |
raise ValueError( | |
"Currently --debug underflow_overflow is not supported under DP. Please use DDP" | |
" (torchrun or torch.distributed.launch (deprecated))." | |
) | |
else: | |
debug_overflow = DebugUnderflowOverflow(self.model) # noqa | |
delay_optimizer_creation = is_sagemaker_mp_enabled() or self.is_fsdp_xla_enabled or self.is_fsdp_enabled | |
# We need to reset the scheduler, as its parameters may be different on subsequent calls | |
if self._created_lr_scheduler: | |
self.lr_scheduler = None | |
self._created_lr_scheduler = False | |
if self.is_deepspeed_enabled: | |
self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps) | |
if not delay_optimizer_creation: | |
self.create_optimizer_and_scheduler(num_training_steps=max_steps) | |
from icecream import ic | |
ic("STATE") | |
self.state = TrainerState( | |
stateful_callbacks=[ | |
cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState) | |
] | |
) | |
self.state.is_hyper_param_search = trial is not None | |
self.state.train_batch_size = self._train_batch_size | |
# Compute absolute values for logging, eval, and save if given as ratio | |
if args.logging_steps is not None: | |
if args.logging_steps < 1: | |
self.state.logging_steps = math.ceil(max_steps * args.logging_steps) | |
else: | |
self.state.logging_steps = args.logging_steps | |
if args.eval_steps is not None: | |
if args.eval_steps < 1: | |
self.state.eval_steps = math.ceil(max_steps * args.eval_steps) | |
else: | |
self.state.eval_steps = args.eval_steps | |
if args.save_steps is not None: | |
if args.save_steps < 1: | |
self.state.save_steps = math.ceil(max_steps * args.save_steps) | |
else: | |
self.state.save_steps = args.save_steps | |
# Activate gradient checkpointing if needed | |
if args.gradient_checkpointing: | |
if args.gradient_checkpointing_kwargs is None: | |
gradient_checkpointing_kwargs = {} | |
else: | |
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs | |
self.model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs) | |
model = self._wrap_model(self.model_wrapped) | |
# as the model is wrapped, don't use `accelerator.prepare` | |
# this is for unhandled cases such as | |
# FSDP-XLA, SageMaker MP/DP, DataParallel, IPEX | |
use_accelerator_prepare = True if model is self.model else False | |
if delay_optimizer_creation: | |
if use_accelerator_prepare: | |
self._fsdp_qlora_plugin_updates() | |
self.model = self.accelerator.prepare(self.model) | |
self.create_optimizer_and_scheduler(num_training_steps=max_steps) | |
# prepare using `accelerator` prepare | |
if use_accelerator_prepare: | |
self.model.train() | |
if hasattr(self.lr_scheduler, "step"): | |
if self.use_apex: | |
model = self.accelerator.prepare(self.model) | |
else: | |
model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer) | |
else: | |
# to handle cases wherein we pass "DummyScheduler" such as when it is specified in DeepSpeed config. | |
model, self.optimizer, self.lr_scheduler = self.accelerator.prepare( | |
self.model, self.optimizer, self.lr_scheduler | |
) | |
if self.is_fsdp_enabled: | |
self.model = self.model_wrapped = model | |
# for the rest of this function `model` is the outside model, whether it was wrapped or not | |
if model is not self.model: | |
self.model_wrapped = model | |
# backward compatibility | |
if self.is_deepspeed_enabled: | |
self.deepspeed = self.model_wrapped | |
# ckpt loading | |
if resume_from_checkpoint is not None: | |
if self.is_deepspeed_enabled: | |
deepspeed_load_checkpoint( | |
self.model_wrapped, resume_from_checkpoint, load_module_strict=not _is_peft_model(self.model) | |
) | |
elif is_sagemaker_mp_enabled() or self.is_fsdp_enabled: | |
self._load_from_checkpoint(resume_from_checkpoint, self.model_wrapped) | |
# Check if saved optimizer or scheduler states exist | |
self._load_optimizer_and_scheduler(resume_from_checkpoint) | |
# important: at this point: | |
# self.model is the Transformers Model | |
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), | |
# FSDP(Transformers Model), Dynamo Optimized Module(Transformers Model) etc. | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {num_examples:,}") | |
logger.info(f" Num Epochs = {num_train_epochs:,}") | |
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}") | |
if self.args.per_device_train_batch_size != self._train_batch_size: | |
logger.info(f" Training with DataParallel so batch size has been adjusted to: {self._train_batch_size:,}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size:,}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {max_steps:,}") | |
logger.info(f" Number of trainable parameters = {get_model_param_count(model, trainable_only=True):,}") | |
self.state.epoch = 0 | |
start_time = time.time() | |
epochs_trained = 0 | |
steps_trained_in_current_epoch = 0 | |
steps_trained_progress_bar = None | |
# Check if continuing training from a checkpoint | |
if resume_from_checkpoint is not None and os.path.isfile( | |
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME) | |
): | |
self.state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)) | |
self.compare_trainer_and_checkpoint_args(self.args, self.state) | |
self._load_callback_state() | |
epochs_trained = self.state.global_step // num_update_steps_per_epoch | |
if not args.ignore_data_skip: | |
steps_trained_in_current_epoch = self.state.global_step % (num_update_steps_per_epoch) | |
steps_trained_in_current_epoch *= args.gradient_accumulation_steps | |
else: | |
steps_trained_in_current_epoch = 0 | |
logger.info(" Continuing training from checkpoint, will skip to saved global_step") | |
logger.info(f" Continuing training from epoch {epochs_trained}") | |
logger.info(f" Continuing training from global step {self.state.global_step}") | |
if not args.ignore_data_skip: | |
logger.info( | |
f" Will skip the first {epochs_trained} epochs then the first" | |
f" {steps_trained_in_current_epoch} batches in the first epoch." | |
) | |
# Update the references | |
self.callback_handler.model = self.model | |
self.callback_handler.optimizer = self.optimizer | |
self.callback_handler.lr_scheduler = self.lr_scheduler | |
self.callback_handler.train_dataloader = train_dataloader | |
if self.hp_name is not None and self._trial is not None: | |
# use self._trial because the SigOpt/Optuna hpo only call `_hp_search_setup(trial)` instead of passing trial | |
# parameter to Train when using DDP. | |
self.state.trial_name = self.hp_name(self._trial) | |
if trial is not None: | |
assignments = trial.assignments if self.hp_search_backend == HPSearchBackend.SIGOPT else trial | |
self.state.trial_params = hp_params(assignments) | |
else: | |
self.state.trial_params = None | |
# This should be the same if the state has been saved but in case the training arguments changed, it's safer | |
# to set this after the load. | |
self.state.max_steps = max_steps | |
self.state.num_train_epochs = num_train_epochs | |
self.state.is_local_process_zero = self.is_local_process_zero() | |
self.state.is_world_process_zero = self.is_world_process_zero() | |
# tr_loss is a tensor to avoid synchronization of TPUs through .item() | |
tr_loss = torch.tensor(0.0).to(args.device) | |
# _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses | |
self._total_loss_scalar = 0.0 | |
self._globalstep_last_logged = self.state.global_step | |
model.zero_grad() | |
grad_norm: Optional[float] = None | |
self.control = self.callback_handler.on_train_begin(args, self.state, self.control) | |
total_batched_samples = 0 | |
from icecream import ic | |
for epoch in range(epochs_trained, num_train_epochs): | |
epoch_iterator = train_dataloader | |
if hasattr(epoch_iterator, "set_epoch"): | |
epoch_iterator.set_epoch(epoch) | |
# Reset the past mems state at the beginning of each epoch if necessary. | |
if args.past_index >= 0: | |
self._past = None | |
steps_in_epoch = ( | |
len(epoch_iterator) | |
if len_dataloader is not None | |
else args.max_steps * args.gradient_accumulation_steps | |
) | |
self.control = self.callback_handler.on_epoch_begin(args, self.state, self.control) | |
if epoch == epochs_trained and resume_from_checkpoint is not None and steps_trained_in_current_epoch == 0: | |
self._load_rng_state(resume_from_checkpoint) | |
rng_to_sync = False | |
steps_skipped = 0 | |
if steps_trained_in_current_epoch > 0: | |
epoch_iterator = skip_first_batches(epoch_iterator, steps_trained_in_current_epoch) | |
steps_skipped = steps_trained_in_current_epoch | |
steps_trained_in_current_epoch = 0 | |
rng_to_sync = True | |
step = -1 | |
for step, inputs in enumerate(epoch_iterator): | |
total_batched_samples += 1 | |
if self.args.include_num_input_tokens_seen: | |
main_input_name = getattr(self.model, "main_input_name", "input_ids") | |
if main_input_name not in inputs: | |
logger.warning( | |
"Tried to track the number of tokens seen, however the current model is " | |
"not configured properly to know what item is the input. To fix this, add " | |
"a `main_input_name` attribute to the model class you are using." | |
) | |
else: | |
input_device = inputs[main_input_name].device | |
self.state.num_input_tokens_seen += torch.sum( | |
self.accelerator.gather( | |
torch.tensor(inputs[main_input_name].numel(), device=input_device, dtype=torch.int64) | |
) | |
).item() | |
if rng_to_sync: | |
self._load_rng_state(resume_from_checkpoint) | |
rng_to_sync = False | |
# Skip past any already trained steps if resuming training | |
if steps_trained_in_current_epoch > 0: | |
steps_trained_in_current_epoch -= 1 | |
if steps_trained_progress_bar is not None: | |
steps_trained_progress_bar.update(1) | |
if steps_trained_in_current_epoch == 0: | |
self._load_rng_state(resume_from_checkpoint) | |
continue | |
elif steps_trained_progress_bar is not None: | |
steps_trained_progress_bar.close() | |
steps_trained_progress_bar = None | |
if step % args.gradient_accumulation_steps == 0: | |
self.control = self.callback_handler.on_step_begin(args, self.state, self.control) | |
with self.accelerator.accumulate(model): | |
ic(step, "before_step", dist.get_rank(), step) | |
tr_loss_step = self.training_step(model, inputs) | |
ic(step, "after_step") | |
if ( | |
args.logging_nan_inf_filter | |
and not is_torch_xla_available() | |
and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step)) | |
): | |
# if loss is nan or inf simply add the average of previous logged losses | |
tr_loss += tr_loss / (1 + self.state.global_step - self._globalstep_last_logged) | |
else: | |
if tr_loss.device != tr_loss_step.device: | |
raise ValueError( | |
f"Calculated loss must be on the original device: {tr_loss.device} but device in use is {tr_loss_step.device}" | |
) | |
tr_loss += tr_loss_step | |
self.current_flos += float(self.floating_point_ops(inputs)) | |
is_last_step_and_steps_less_than_grad_acc = ( | |
steps_in_epoch <= args.gradient_accumulation_steps and (step + 1) == steps_in_epoch | |
) | |
from icecream import ic | |
ic(total_batched_samples, dist.get_rank()) | |
if ( | |
total_batched_samples % args.gradient_accumulation_steps == 0 | |
or | |
# last step in epoch but step is always smaller than gradient_accumulation_steps | |
is_last_step_and_steps_less_than_grad_acc | |
): | |
# the `or` condition of `is_last_step_and_steps_less_than_grad_acc` is not covered | |
# in accelerate. So, explicitly enable sync gradients to True in that case. | |
from icecream import ic | |
ic("pre_sync", dist.get_rank()) | |
if is_last_step_and_steps_less_than_grad_acc: | |
self.accelerator.gradient_state._set_sync_gradients(True) | |
from icecream import ic | |
ic("post_sync", dist.get_rank()) | |
# Gradient clipping | |
if args.max_grad_norm is not None and args.max_grad_norm > 0: | |
# deepspeed does its own clipping | |
from icecream import ic | |
ic("pre-clip", dist.get_rank()) | |
if is_sagemaker_mp_enabled() and args.fp16: | |
_grad_norm = self.optimizer.clip_master_grads(args.max_grad_norm) | |
elif self.use_apex: | |
# Revert to normal clipping otherwise, handling Apex or full precision | |
_grad_norm = nn.utils.clip_grad_norm_( | |
amp.master_params(self.optimizer), | |
args.max_grad_norm, | |
) | |
else: | |
_grad_norm = self.accelerator.clip_grad_norm_( | |
model.parameters(), | |
args.max_grad_norm, | |
) | |
from icecream import ic | |
ic("post_clip", dist.get_rank()) | |
if ( | |
is_accelerate_available() | |
and self.accelerator.distributed_type == DistributedType.DEEPSPEED | |
): | |
grad_norm = model.get_global_grad_norm() | |
# In some cases the grad norm may not return a float | |
if hasattr(grad_norm, "item"): | |
grad_norm = grad_norm.item() | |
else: | |
grad_norm = _grad_norm | |
from icecream import ic | |
ic(grad_norm) | |
# Optimizer step | |
self.optimizer.step() | |
from icecream import ic | |
ic("post opt step", dist.get_rank()) | |
optimizer_was_run = not self.accelerator.optimizer_step_was_skipped | |
if optimizer_was_run: | |
# Delay optimizer scheduling until metrics are generated | |
if not isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): | |
self.lr_scheduler.step() | |
from icecream import ic | |
ic("pre zero grad", dist.get_rank()) | |
model.zero_grad() | |
self.state.global_step += 1 | |
self.state.epoch = epoch + (step + 1 + steps_skipped) / steps_in_epoch | |
self.control = self.callback_handler.on_step_end(args, self.state, self.control) | |
from icecream import ic | |
ic("post control", dist.get_rank()) | |
self._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval) | |
from icecream import ic | |
ic("post log", dist.get_rank()) | |
else: | |
self.control = self.callback_handler.on_substep_end(args, self.state, self.control) | |
ic("after callback", dist.get_rank()) | |
if self.control.should_epoch_stop or self.control.should_training_stop: | |
# PyTorch/XLA relies on the data loader to insert the mark_step for | |
# each step. Since we are breaking the loop early, we need to manually | |
# insert the mark_step here. | |
break | |
if step < 0: | |
logger.warning( | |
"There seems to be not a single sample in your epoch_iterator, stopping training at step" | |
f" {self.state.global_step}! This is expected if you're using an IterableDataset and set" | |
f" num_steps ({max_steps}) higher than the number of available samples." | |
) | |
self.control.should_training_stop = True | |
self.control = self.callback_handler.on_epoch_end(args, self.state, self.control) | |
self._maybe_log_save_evaluate(tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval) | |
if self.control.should_training_stop: | |
break | |
if args.past_index and hasattr(self, "_past"): | |
# Clean the state at the end of training | |
delattr(self, "_past") | |
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n") | |
if args.load_best_model_at_end and self.state.best_model_checkpoint is not None: | |
# Wait for everyone to get here so we are sure the model has been saved by process 0. | |
if args.parallel_mode == ParallelMode.DISTRIBUTED: | |
dist.barrier() | |
self._load_best_model() | |
# add remaining tr_loss | |
self._total_loss_scalar += tr_loss.item() | |
effective_global_step = max(self.state.global_step, 0.001) # Avoid ZeroDivisionError | |
train_loss = self._total_loss_scalar / effective_global_step | |
metrics = speed_metrics( | |
"train", | |
start_time, | |
num_samples=num_train_samples, | |
num_steps=self.state.max_steps, | |
num_tokens=num_train_tokens, | |
) | |
self.store_flos() | |
metrics["total_flos"] = self.state.total_flos | |
metrics["train_loss"] = train_loss | |
self.is_in_train = False | |
self._memory_tracker.stop_and_update_metrics(metrics) | |
self.log(metrics) | |
run_dir = self._get_output_dir(trial) | |
checkpoints_sorted = self._sorted_checkpoints(use_mtime=False, output_dir=run_dir) | |
# Delete the last checkpoint when save_total_limit=1 if it's different from the best checkpoint and process allowed to save. | |
if self.args.should_save and self.state.best_model_checkpoint is not None and self.args.save_total_limit == 1: | |
for checkpoint in checkpoints_sorted: | |
if not os.path.samefile(checkpoint, self.state.best_model_checkpoint): | |
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") | |
shutil.rmtree(checkpoint) | |
self.control = self.callback_handler.on_train_end(args, self.state, self.control) | |
# Wait for the checkpoint to be uploaded. | |
self._finish_current_push() | |
# After training we make sure to retrieve back the original forward pass method | |
# for the embedding layer by removing the forward post hook. | |
if self.neftune_noise_alpha is not None: | |
self._deactivate_neftune(self.model) | |
return TrainOutput(self.state.global_step, train_loss, metrics) | |
def create_optimizer(self): | |
""" | |
Setup the optimizer. | |
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the | |
Trainer's init through `optimizers`, or subclass and override this method in a subclass. | |
""" | |
if is_sagemaker_mp_enabled(): | |
return super().create_optimizer() | |
opt_model = self.model | |
if self.optimizer is None: | |
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS) | |
decay_parameters = [name for name in decay_parameters if "bias" not in name] | |
if self.args.mm_vision_lr is not None: | |
def include_vision_params(name): | |
return "vision_tower" not in name | |
else: | |
def include_vision_params(name): | |
return True | |
if self.args.mm_projector_lr is not None: | |
projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [ | |
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in projector_parameters and p.requires_grad) | |
], | |
"weight_decay": self.args.weight_decay, | |
}, | |
{ | |
"params": [ | |
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in projector_parameters and p.requires_grad) | |
], | |
"weight_decay": 0.0, | |
}, | |
{ | |
"params": [ | |
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in projector_parameters and p.requires_grad) | |
], | |
"weight_decay": self.args.weight_decay, | |
"lr": self.args.mm_projector_lr, | |
}, | |
{ | |
"params": [ | |
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in projector_parameters and p.requires_grad) | |
], | |
"weight_decay": 0.0, | |
"lr": self.args.mm_projector_lr, | |
}, | |
] | |
else: | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [ | |
p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad and include_vision_params(n)) | |
], | |
"weight_decay": self.args.weight_decay, | |
}, | |
{ | |
"params": [ | |
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad and include_vision_params(n)) | |
], | |
"weight_decay": 0.0, | |
}, | |
] | |
if self.args.mm_vision_lr is not None: | |
vision_tower_parameters = [name for name, _ in opt_model.named_parameters() if "vision_tower" in name] | |
optimizer_grouped_parameters.extend([ | |
{ | |
"params": [ | |
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in vision_tower_parameters and p.requires_grad) | |
], | |
"weight_decay": self.args.weight_decay, | |
"lr": self.args.mm_vision_lr, | |
}, | |
{ | |
"params": [ | |
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in vision_tower_parameters and p.requires_grad) | |
], | |
"weight_decay": 0.0, | |
"lr": self.args.mm_vision_lr, | |
}, | |
]) | |
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args) | |
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) | |
if optimizer_cls.__name__ == "Adam8bit": | |
import bitsandbytes | |
manager = bitsandbytes.optim.GlobalOptimManager.get_instance() | |
skipped = 0 | |
for module in opt_model.modules(): | |
if isinstance(module, nn.Embedding): | |
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values()) | |
logger.info(f"skipped {module}: {skipped/2**20}M params") | |
manager.register_module_override(module, "weight", {"optim_bits": 32}) | |
logger.debug(f"bitsandbytes: will optimize {module} in fp32") | |
logger.info(f"skipped: {skipped/2**20}M params") | |
return self.optimizer | |
def _save_checkpoint(self, model, trial, metrics=None): | |
if getattr(self.args, 'tune_mm_mlp_adapter', False): | |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR | |
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" | |
run_dir = self._get_output_dir(trial=trial) | |
output_dir = os.path.join(run_dir, checkpoint_folder) | |
# Only save Adapter | |
keys_to_match = ['mm_projector', 'vision_resampler'] | |
if getattr(self.args, "use_im_start_end", False): | |
keys_to_match.extend(['embed_tokens', 'embed_in']) | |
weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match) | |
if self.args.local_rank == 0 or self.args.local_rank == -1: | |
self.model.config.save_pretrained(output_dir) | |
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) | |
# else: | |
super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics) | |
def _save(self, output_dir: Optional[str] = None, state_dict=None): | |
# if getattr(self.args, 'tune_mm_mlp_adapter', False): | |
# pass | |
# else: | |
super(LLaVATrainer, self)._save(output_dir, state_dict) |