OLA-VLM / ola_vlm /model /make_delta.py
praeclarumjj3's picture
:zap: add code
9fa3d89
"""
Usage:
python3 -m ola_vlm.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta
"""
import argparse
import torch
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM
from ola_vlm.model.utils import auto_upgrade
def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id):
print("Loading base model")
base = AutoModelForCausalLM.from_pretrained(
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
print("Loading target model")
auto_upgrade(target_model_path)
target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
print("Calculating delta")
for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"):
if name not in base.state_dict():
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
continue
if param.data.shape == base.state_dict()[name].shape:
param.data -= base.state_dict()[name]
else:
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
bparam = base.state_dict()[name]
param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam
print("Saving delta")
if hub_repo_id:
kwargs = {"push_to_hub": True, "repo_id": hub_repo_id}
else:
kwargs = {}
target.save_pretrained(delta_path, **kwargs)
target_tokenizer = AutoTokenizer.from_pretrained(target_model_path)
target_tokenizer.save_pretrained(delta_path, **kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--base-model-path", type=str, required=True)
parser.add_argument("--target-model-path", type=str, required=True)
parser.add_argument("--delta-path", type=str, required=True)
parser.add_argument("--hub-repo-id", type=str, default=None)
args = parser.parse_args()
make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id)