import spaces import gradio as gr import torch import numpy as np from ola_vlm.constants import DEFAULT_IMAGE_TOKEN from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from ola_vlm.conversation import conv_templates, SeparatorStyle from ola_vlm.model.builder import load_pretrained_model from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images from diffusers import StableUnCLIPImg2ImgPipeline, DPMSolverMultistepScheduler from transformers import OneFormerProcessor from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead from ola_vlm.ola_utils import visualize_oneformer_masks_on_image, oneformer_prepare_panoptic_instance_prediction import matplotlib from PIL import Image, ImageDraw, ImageFont import argparse import math from transformers import TextIteratorStreamer from threading import Thread import subprocess # Install flash attention, skipping CUDA build if necessary subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) def make_grid(pil_images, layer_indices=None): new_images = [] new_captions = [] # Resize images and prepare captions for i, pil_image in enumerate(pil_images): pil_image = pil_image.resize((256, 256)) new_images.append(pil_image) if layer_indices is not None: new_captions.append(f"Layer: {layer_indices[i]}") else: new_captions.append(f"Layer: {i+1}") images = new_images captions = new_captions width, height = images[0].size font_size = 18 # Calculate the number of rows and columns for the grid images_per_row = min(len(images), 4) # Max 4 images per row row_count = math.ceil(len(images) / images_per_row) total_width = width * images_per_row total_height = height * row_count # Create a new blank image new_image = Image.new("RGB", (total_width, total_height), "white") draw = ImageDraw.Draw(new_image) # Load a default font try: font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size) except: font = ImageFont.load_default() # Place images and captions in the grid for i, (image, caption) in enumerate(zip(images, captions)): row = i // images_per_row col = i % images_per_row x_offset = col * width y_offset = row * height # Paste the image new_image.paste(image, (x_offset, y_offset)) # Calculate text and background positions text_width, text_height = draw.textsize(caption, font=font) text_position = (x_offset + 10, y_offset + height - text_height - 10) background_position = ( text_position[0] - 5, text_position[1] - 5, text_position[0] + text_width + 5, text_position[1] + text_height + 5, ) # Draw background rectangle and text draw.rectangle(background_position, fill="white", outline="black") draw.text(text_position, caption, fill="black", font=font) return new_image def reload_from_ckpt(model_path, model, cache_dir=None): import os from safetensors import safe_open from huggingface_hub import hf_hub_download, list_repo_files state_dict = {} # Check if the path is a local directory or HF Hub model if os.path.isdir(model_path): # Local directory: Load safetensors files safetensors_paths = [os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.safetensors')] else: # HF Hub: Get list of safetensors files and download them repo_files = list_repo_files(model_path) safetensors_paths = [ hf_hub_download(model_path, file_name, cache_dir=cache_dir) for file_name in repo_files if file_name.endswith('.safetensors') ] # Load safetensors files into the state_dict for path in safetensors_paths: with safe_open(path, framework="pt", device="cpu") as f: for key in f.keys(): state_dict[key] = f.get_tensor(key) # Load the state dict into the model model.load_state_dict(state_dict, strict=False) return model # os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp' no_change_btn = gr.Button() enable_btn = gr.Button(interactive=True) disable_btn = gr.Button(interactive=False) argparser = argparse.ArgumentParser() argparser.add_argument("--server_name", default="0.0.0.0", type=str) argparser.add_argument("--port", default="6324", type=str) argparser.add_argument("--model-path", default="shi-labs/pretrain_dsg_OLA-VLM-CLIP-ViT-Llama3-8b", type=str) argparser.add_argument("--model-base", type=str, default=None) argparser.add_argument("--num-gpus", type=int, default=1) argparser.add_argument("--conv-mode", type=str, default="llava_llama_3") argparser.add_argument("--temperature", type=float, default=0.2) argparser.add_argument("--max-new-tokens", type=int, default=512) argparser.add_argument("--num_frames", type=int, default=16) argparser.add_argument("--load-8bit", action="store_true") argparser.add_argument("--load-4bit", action="store_true") argparser.add_argument("--debug", action="store_true") args = argparser.parse_args() model_path = args.model_path conv_mode = args.conv_mode filt_invalid="cut" model_name = get_model_name_from_path(args.model_path) tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit) model = reload_from_ckpt("shi-labs/OLA-VLM-CLIP-ViT-Llama3-8b", model) our_chatbot = None pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16") pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) oneformer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large") oneformer = OneFormerHead.from_pretrained("shi-labs/oneformer_coco_swin_large") gen_layer_indices = model.config.image_gen["img_layer_indices"].split("-") seg_layer_indices = model.config.image_seg["seg_layer_indices"].split("-") depth_layer_indices = model.config.image_depth["depth_layer_indices"].split("-") def clear_history(): state =conv_templates[conv_mode].copy() return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5 def add_text(state, imagebox, textbox, image_process_mode): if state is None: state = conv_templates[conv_mode].copy() if imagebox is not None: textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox image = Image.open(imagebox).convert('RGB') if imagebox is not None: textbox = (textbox, image, image_process_mode) state.append_message(state.roles[0], textbox) state.append_message(state.roles[1], None) yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) def get_gen_images(out, pipe): pipe = pipe.to("cuda") img_embeds = out.image_embs if len(img_embeds) == 0: return None images = [] for img_embed in img_embeds: gen_image = pipe(image_embeds=img_embed.squeeze(1), num_inference_steps=25, ).images[0] images.append(gen_image) grid_image = make_grid(images, gen_layer_indices) return grid_image def get_depth_images(out, org_size): depth_preds = out.depth_preds if len(depth_preds) == 0: return None depths = [] for i, depth_pred in enumerate(depth_preds): depth = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0 depth = depth.squeeze(0).cpu().numpy() depth = depth.astype(np.uint8) cmap = matplotlib.colormaps.get_cmap('Spectral_r') depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) depth = Image.fromarray(depth) depth = depth.resize(org_size) depths.append(depth) grid_image = make_grid(depths, depth_layer_indices) return grid_image def get_seg_images(out, image, oneformer): oneformer = oneformer.to("cuda") seg_embs = out.seg_embs if len(seg_embs) == 0: return None seg_preds = [] inputs = oneformer_processor(image, ["semantic"], return_tensors="pt") inputs["pixel_values"] = inputs["pixel_values"].to(out.logits.device, out.logits.dtype) inputs["task_inputs"] = inputs["task_inputs"].to(out.logits.device, out.logits.dtype) backbone_features = oneformer.get_backbone_feats(**inputs) for i, seg_emb in enumerate(seg_embs): pred = oneformer.get_masks(**inputs, backbone_last_feature=seg_emb.float(), all_backbone_features=backbone_features) pred = oneformer_processor.post_process_panoptic_segmentation( pred, target_sizes=[image.size[::-1]] )[0] pred_msk, pred_cls = oneformer_prepare_panoptic_instance_prediction(**pred, oneformer=oneformer) pred = visualize_oneformer_masks_on_image(image, pred_msk, pred_cls) seg_preds.append(pred) grid_image = make_grid(seg_preds, seg_layer_indices) return grid_image def delete_text(state, image_process_mode): state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) def regenerate(state, image_process_mode): state.messages[-1][-1] = None prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) state.skip_next = False return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 @spaces.GPU def get_interm_outs(state): prompt = state.get_prompt() images = state.get_images(return_pil=True) #prompt, image_args = process_image(prompt, images) if images is not None and len(images) > 0: if len(images) > 0: if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): raise ValueError("Number of images does not match number of tokens in prompt") #images = [load_image_from_base64(image) for image in images] image_sizes = [image.size for image in images] inp_images = process_images(images, image_processor, model.config) if type(inp_images) is list: inp_images = [image.to(model.device, dtype=torch.float16) for image in images] else: inp_images = inp_images.to(model.device, dtype=torch.float16) else: inp_images = None image_sizes = None image_args = {"images": inp_images, "image_sizes": image_sizes} else: inp_images = None image_args = {} input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) interm_outs = model.get_visual_interpretations( input_ids, **image_args ) depth_outs = get_depth_images(interm_outs, image_sizes[0]) seg_outs = get_seg_images(interm_outs, images[0], oneformer) gen_outs = get_gen_images(interm_outs, pipe) return depth_outs, seg_outs, gen_outs @spaces.GPU def generate(state, temperature, top_p, max_output_tokens): prompt = state.get_prompt() images = state.get_images(return_pil=True) #prompt, image_args = process_image(prompt, images) ori_prompt = prompt num_image_tokens = 0 if images is not None and len(images) > 0: if len(images) > 0: if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): raise ValueError("Number of images does not match number of tokens in prompt") #images = [load_image_from_base64(image) for image in images] image_sizes = [image.size for image in images] images = process_images(images, image_processor, model.config) if type(images) is list: images = [image.to(model.device, dtype=torch.float16) for image in images] else: images = images.to(model.device, dtype=torch.float16) else: images = None image_sizes = None image_args = {"images": images, "image_sizes": image_sizes} else: images = None image_args = {} max_context_length = getattr(model.config, 'max_position_embeddings', 2048) max_new_tokens = max_output_tokens do_sample = True if temperature > 0.001 else False stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2 input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) if max_new_tokens < 1: return thread = Thread(target=model.generate, kwargs=dict( inputs=input_ids, do_sample=do_sample, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, streamer=streamer, use_cache=True, pad_token_id=tokenizer.eos_token_id, **image_args )) thread.start() generated_text = '' for new_text in streamer: generated_text += new_text if generated_text.endswith(stop_str): generated_text = generated_text[:-len(stop_str)] state.messages[-1][-1] = generated_text yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5 torch.cuda.empty_cache() txt = gr.Textbox( scale=4, show_label=False, placeholder="Enter text and press enter.", container=False, ) title = "

OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation

" description = "

Jitesh Jain    Zhengyuan Yang    Humphrey Shi*    Jianfeng Gao*    Jianwei Yang*

" \ + "

*Equal Advising

" \ + "

Project Page | Video | ArXiv | Github

" \ + "

OLA-VLM introduces a new approach to distilling vision knowledge into the hidden representations of LLMs, utilizing target visual representations to advance visual perception in multimodal LLMs. In the demo, along with the standard VQA setting, you can also visualize the intermediate representations from selected layers in OLA-VLM by clicking on the ✨ Visualize Intermediate Representations button! Note that our demo only supports single image input currently.

" \ + "" tos_markdown = (""" ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. """) learn_more_markdown = (""" ### License The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. """) block_css = """ #buttons button { min-width: min(120px,100%); } """ textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) with gr.Blocks(title="OLA-VLM", theme=gr.themes.Default(), css=block_css) as demo: state = gr.State() gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(scale=4): imagebox = gr.Image(label="Input Image", type="filepath") image_process_mode = gr.Radio( ["Crop", "Resize", "Pad", "Default"], value="Default", label="Preprocess for non-square image", visible=False) # with gr.Accordion("Parameters", open=False) as parameter_row: with gr.Row(): temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) with gr.Column(scale=8): chatbot = gr.Chatbot( elem_id="chatbot", label="OLA-VLM", height=300, layout="panel", ) textbox.render() with gr.Row(elem_id="buttons") as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False, visible=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False, visible=False) flag_btn = gr.Button(value="⚠ī¸ Flag", interactive=False, visible=False) #stop_btn = gr.Button(value="⏚ī¸ Stop Generation", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑ī¸ Clear", interactive=False) submit_btn = gr.Button(value="Send", variant="primary") # with gr.Accordion("Representations from selected layers of the LLM (expects only a single image input)", open=False) as interm_out: inter_vis_btn = gr.Button(value="✨ Visualize Intermediate Representations") with gr.Row(): depth_box = gr.Image(label="depth", type="pil", visible=True) seg_box = gr.Image(label="seg", type="pil", visible=True) gen_box = gr.Image(label="gen", type="pil", visible=True) gr.Examples(examples=[ [f"assets/cars.jpg", "Which car is in front: the blue or the brown one?"], [f"assets/pb.jpg", "Where is the bulding located with respect to the man?"], ], inputs=[imagebox, textbox], cache_examples=False) # gr.Markdown(tos_markdown) # gr.Markdown(learn_more_markdown) # url_params = gr.JSON(visible=False) # Register listeners btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] inter_vis_btn.click( get_interm_outs, [state], [depth_box, seg_box, gen_box], ) clear_btn.click( clear_history, None, [state, chatbot, textbox, imagebox, depth_box, gen_box, seg_box] + btn_list, queue=False ) regenerate_btn.click( delete_text, [state, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list, ).then( generate, [state, temperature, top_p, max_output_tokens], [state, chatbot, textbox, imagebox] + btn_list, ) textbox.submit( add_text, [state, imagebox, textbox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list, ).then( generate, [state, temperature, top_p, max_output_tokens], [state, chatbot, textbox, imagebox] + btn_list, ) submit_btn.click( add_text, [state, imagebox, textbox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list, ).then( generate, [state, temperature, top_p, max_output_tokens], [state, chatbot, textbox, imagebox] + btn_list, ) demo.queue( status_update_rate=10, api_open=False ).launch(share=False) demo.queue()