from PIL import Image from io import BytesIO import base64 import torch import math import ast import re from transformers import StoppingCriteria from ola_vlm.constants import IMAGE_TOKEN_INDEX ########################################### def resize_and_center_crop(image, shortest_edge_length): # Calculate new dimensions and resize aspect_ratio = float(image.width) / float(image.height) if aspect_ratio > 1: new_width = int(shortest_edge_length * aspect_ratio) new_height = shortest_edge_length else: new_width = shortest_edge_length new_height = int(shortest_edge_length / aspect_ratio) resized_image = image.resize((new_width, new_height), Image.ANTIALIAS) # Calculate the position and perform the center crop left = (new_width - shortest_edge_length) / 2 top = (new_height - shortest_edge_length) / 2 right = (new_width + shortest_edge_length) / 2 bottom = (new_height + shortest_edge_length) / 2 cropped_image = resized_image.crop((left, top, right, bottom)) return cropped_image def auto_pad_images(image, grid_params): assert isinstance(image, Image.Image), "Input should be a Pillow Image" assert len(grid_params) > 0, "Grid parameters should not be empty" # Step 1: Calculate and find the closest aspect ratio input_width, input_height = image.size input_aspect_ratio = input_width / input_height candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params] closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0])) candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3] target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1)) resize_width, resize_height = target_resolution if input_width > input_height: resize_height = int(resize_width / input_aspect_ratio) else: resize_width = int(resize_height * input_aspect_ratio) resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS) # Step 5: Pad the resized image if necessary to match the target resolution pad_width = target_resolution[0] - resize_width pad_height = target_resolution[1] - resize_height padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0)) padded_image.paste(resized_image, (pad_width // 2, pad_height // 2)) return padded_image def extract_patches(image, patch_size, overlap_ratio): assert isinstance(image, Image.Image), "Input should be a Pillow Image" assert patch_size > 0, "Patch size should be greater than 0" assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1" W, H = image.size patches = [] stride = int(patch_size * (1 - overlap_ratio)) num_patches_y = (H - patch_size) // stride + 1 num_patches_x = (W - patch_size) // stride + 1 y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2 x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2 for y in range(y_start, y_start + num_patches_y * stride, stride): for x in range(x_start, x_start + num_patches_x * stride, stride): patch = image.crop((x, y, x + patch_size, y + patch_size)) patches.append(patch) return patches def process_highres_image_crop_split(image, data_args, processor=None): crop_resolution = data_args.image_crop_resolution split_resolution = data_args.image_split_resolution if processor is None: processor = data_args.image_processor image_crop = resize_and_center_crop(image, crop_resolution) image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0) image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] return torch.stack(image_patches, dim=0) def process_highres_image(image, processor, grid_pinpoints): grid_params = [int(x) for x in grid_pinpoints.split(",")] width_height = max(image.size) fit_grid_params = [x for x in grid_params if x >= width_height] if len(fit_grid_params) == 0: select_size = max(grid_params) else: select_size = min(fit_grid_params) # FIXME: always select the 448 select_size = max(grid_params) image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) # FIXME: this seems to be a bug that it always resizes instead of padding image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"])) image_padded = image_padded.resize((select_size, select_size)) image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0) image_patches = [image_original_resize] + image_patches image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] return torch.stack(image_patches, dim=0) ######################################## def select_best_resolution(original_size, possible_resolutions): """ Selects the best resolution from a list of possible resolutions based on the original size. Args: original_size (tuple): The original size of the image in the format (width, height). possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. Returns: tuple: The best fit resolution in the format (width, height). """ original_width, original_height = original_size best_fit = None max_effective_resolution = 0 min_wasted_resolution = float('inf') for width, height in possible_resolutions: scale = min(width / original_width, height / original_height) downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) wasted_resolution = (width * height) - effective_resolution if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): max_effective_resolution = effective_resolution min_wasted_resolution = wasted_resolution best_fit = (width, height) return best_fit def resize_and_pad_image(image, target_resolution): """ Resize and pad an image to a target resolution while maintaining aspect ratio. Args: image (PIL.Image.Image): The input image. target_resolution (tuple): The target resolution (width, height) of the image. Returns: PIL.Image.Image: The resized and padded image. """ original_width, original_height = image.size target_width, target_height = target_resolution scale_w = target_width / original_width scale_h = target_height / original_height if scale_w < scale_h: new_width = target_width new_height = min(math.ceil(original_height * scale_w), target_height) else: new_height = target_height new_width = min(math.ceil(original_width * scale_h), target_width) # Resize the image resized_image = image.resize((new_width, new_height)) new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0)) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 new_image.paste(resized_image, (paste_x, paste_y)) return new_image def divide_to_patches(image, patch_size): """ Divides an image into patches of a specified size. Args: image (PIL.Image.Image): The input image. patch_size (int): The size of each patch. Returns: list: A list of PIL.Image.Image objects representing the patches. """ patches = [] width, height = image.size for i in range(0, height, patch_size): for j in range(0, width, patch_size): box = (j, i, j + patch_size, i + patch_size) patch = image.crop(box) patches.append(patch) return patches def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): """ Calculate the shape of the image patch grid after the preprocessing for images of any resolution. Args: image_size (tuple): The size of the input image in the format (width, height). grid_pinpoints (str): A string representation of a list of possible resolutions. patch_size (int): The size of each image patch. Returns: tuple: The shape of the image patch grid in the format (width, height). """ if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" # Use regex to extract the range from the input string matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) range_start = tuple(map(int, matches[0])) range_end = tuple(map(int, matches[-1])) # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1]) grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] # Multiply all elements by patch_size grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) width, height = select_best_resolution(image_size, possible_resolutions) return width // patch_size, height // patch_size def process_anyres_image(image, processor, grid_pinpoints): """ Process an image with variable resolutions. Args: image (PIL.Image.Image): The input image to be processed. processor: The image processor object. grid_pinpoints (str): A string representation of a list of possible resolutions. Returns: torch.Tensor: A tensor containing the processed image patches. """ # Convert grid_pinpoints from string to list if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: try: patch_size = processor.size[0] except Exception as e: patch_size = processor.size["shortest_edge"] assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" # Use regex to extract the range from the input string matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) range_start = tuple(map(int, matches[0])) range_end = tuple(map(int, matches[-1])) # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1]) grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] # Multiply all elements by patch_size grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) best_resolution = select_best_resolution(image.size, possible_resolutions) image_padded = resize_and_pad_image(image, best_resolution) patches = divide_to_patches(image_padded, processor.crop_size["height"]) # FIXME: this seems to be a bug that it resizes instead of pad. # but to keep it consistent with previous, i will keep it as it is # TODO: uncomment below to ablate with the padding if isinstance(processor.size, dict): shortest_edge = processor.size["shortest_edge"] else: shortest_edge = min(processor.size) image_original_resize = image.resize((shortest_edge, shortest_edge)) # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) image_patches = [image_original_resize] + patches image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] return torch.stack(image_patches, dim=0) def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def process_images(images, image_processor, model_cfg): image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) new_images = [] if image_aspect_ratio == "highres": for image in images: image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints) new_images.append(image) elif image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio: for image in images: image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints) new_images.append(image) elif image_aspect_ratio == "crop_split": for image in images: image = process_highres_image_crop_split(image, model_cfg, image_processor) new_images.append(image) elif image_aspect_ratio == "pad": for image in images: image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean)) image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0] new_images.append(image) else: return image_processor.preprocess(images, return_tensors="pt")["pixel_values"] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: truncated_output_ids = output_ids[0, -keyword_id.shape[0]:] if torch.equal(truncated_output_ids, keyword_id): return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: outputs = [] for i in range(output_ids.shape[0]): outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) return all(outputs)