File size: 12,183 Bytes
6e445f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
decef32
6e445f1
 
 
 
 
 
 
 
 
decef32
 
 
 
 
 
 
6e445f1
 
 
 
 
decef32
 
 
 
 
 
 
6e445f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3701f72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e445f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3701f72
 
 
 
 
 
 
 
 
 
 
6e445f1
3701f72
6e445f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3701f72
 
 
6e445f1
 
 
 
 
 
 
 
 
 
eee15d2
 
 
f206f62
 
eee15d2
f206f62
 
 
 
 
 
 
6e445f1
 
 
 
 
3701f72
6e445f1
 
4f81b41
f206f62
4f81b41
6e445f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4c4058
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch

print("Installed the dependencies!")

import numpy as np
from PIL import Image
import cv2
import imutils

from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data import MetadataCatalog

from oneformer import (
    add_oneformer_config,
    add_common_config,
    add_swin_config,
    add_dinat_config,
)

from demo.defaults import DefaultPredictor
from demo.visualizer import Visualizer, ColorMode

import gradio as gr
from huggingface_hub import hf_hub_download

KEY_DICT = {"Cityscapes (19 classes)": "cityscapes",
            "COCO (133 classes)": "coco",
            "ADE20K (150 classes)": "ade20k",}

SWIN_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_swin_large_IN21k_384_bs16_90k.yaml",
            "coco": "configs/coco/oneformer_swin_large_IN21k_384_bs16_100ep.yaml",
            "ade20k": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml",}

SWIN_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_cityscapes", 
                                            filename="250_16_swin_l_oneformer_cityscapes_90k.pth"),
              "coco": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_coco", 
                                            filename="150_16_swin_l_oneformer_coco_100ep.pth"),
              "ade20k": hf_hub_download(repo_id="shi-labs/swin_l_oneformer_ade20k", 
                                            filename="250_16_swin_l_oneformer_ade20k_160k.pth")
            }

DINAT_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_dinat_large_bs16_90k.yaml",
            "coco": "configs/coco/oneformer_dinat_large_bs16_100ep.yaml",
            "ade20k": "configs/ade20k/oneformer_dinat_large_IN21k_384_bs16_160k.yaml",}

DINAT_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_cityscapes", 
                                            filename="250_16_dinat_l_oneformer_cityscapes_90k.pth"),
              "coco": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_coco", 
                                            filename="150_16_dinat_l_oneformer_coco_100ep.pth"),
              "ade20k": hf_hub_download(repo_id="shi-labs/dinat_l_oneformer_ade20k", 
                                            filename="250_16_dinat_l_oneformer_ade20k_160k.pth")
            }

MODEL_DICT = {"DiNAT-L": DINAT_MODEL_DICT,
        "Swin-L": SWIN_MODEL_DICT }

CFG_DICT = {"DiNAT-L": DINAT_CFG_DICT,
        "Swin-L": SWIN_CFG_DICT }

WIDTH_DICT = {"cityscapes": 512,
              "coco": 512,
              "ade20k": 640}

cpu_device = torch.device("cpu")

PREDICTORS = {
    "DiNAT-L": {
        "Cityscapes (19 classes)": None,
        "COCO (133 classes)": None,
        "ADE20K (150 classes)": None
    },
    "Swin-L": {
        "Cityscapes (19 classes)": None,
        "COCO (133 classes)": None,
        "ADE20K (150 classes)": None
    }
}

METADATA = {
    "DiNAT-L": {
        "Cityscapes (19 classes)": None,
        "COCO (133 classes)": None,
        "ADE20K (150 classes)": None
    },
    "Swin-L": {
        "Cityscapes (19 classes)": None,
        "COCO (133 classes)": None,
        "ADE20K (150 classes)": None
    }
}

def setup_modules():
    for dataset in ["Cityscapes (19 classes)", "COCO (133 classes)", "ADE20K (150 classes)"]:
        for backbone in ["DiNAT-L", "Swin-L"]:
            cfg = setup_cfg(dataset, backbone)
            metadata = MetadataCatalog.get(
            cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused"
            )
            if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST_PANOPTIC[0]:
                from cityscapesscripts.helpers.labels import labels
                stuff_colors = [k.color for k in labels if k.trainId != 255]
                metadata = metadata.set(stuff_colors=stuff_colors)
            PREDICTORS[backbone][dataset] = DefaultPredictor(cfg)
            METADATA[backbone][dataset] = metadata

def setup_cfg(dataset, backbone):
    # load config from file and command-line arguments
    cfg = get_cfg()
    add_deeplab_config(cfg)
    add_common_config(cfg)
    add_swin_config(cfg)
    add_oneformer_config(cfg)
    add_dinat_config(cfg)
    dataset = KEY_DICT[dataset]
    cfg_path = CFG_DICT[backbone][dataset]
    cfg.merge_from_file(cfg_path)
    if torch.cuda.is_available():
        cfg.MODEL.DEVICE = 'cuda'
    else:
        cfg.MODEL.DEVICE = 'cpu'
    cfg.MODEL.WEIGHTS = MODEL_DICT[backbone][dataset]
    cfg.freeze()
    return cfg

# def setup_modules(dataset, backbone):
#     cfg = setup_cfg(dataset, backbone)
#     predictor = DefaultPredictor(cfg)
#     # predictor = PREDICTORS[backbone][dataset]
#     metadata = MetadataCatalog.get(
#         cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused"
#     )
#     if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST_PANOPTIC[0]:
#         from cityscapesscripts.helpers.labels import labels
#         stuff_colors = [k.color for k in labels if k.trainId != 255]
#         metadata = metadata.set(stuff_colors=stuff_colors)
    
#     return predictor, metadata

def panoptic_run(img, predictor, metadata):
    visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
    predictions = predictor(img, "panoptic")
    panoptic_seg, segments_info = predictions["panoptic_seg"]
    out = visualizer.draw_panoptic_seg_predictions(
        panoptic_seg.to(cpu_device), segments_info, alpha=0.5
    )
    visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
    out_map = visualizer_map.draw_panoptic_seg_predictions(
        panoptic_seg.to(cpu_device), segments_info, alpha=1, is_text=False
    )
    return out, out_map

def instance_run(img, predictor, metadata):
    visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
    predictions = predictor(img, "instance")
    instances = predictions["instances"].to(cpu_device)
    out = visualizer.draw_instance_predictions(predictions=instances, alpha=0.5)
    visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
    out_map = visualizer_map.draw_instance_predictions(predictions=instances, alpha=1, is_text=False)
    return out, out_map

def semantic_run(img, predictor, metadata):
    visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
    predictions = predictor(img, "semantic")
    out = visualizer.draw_sem_seg(
        predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=0.5
    )
    visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
    out_map = visualizer_map.draw_sem_seg(
        predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=1, is_text=False
    )
    return out, out_map

TASK_INFER = {"the task is panoptic": panoptic_run, "the task is instance": instance_run, "the task is semantic": semantic_run}

def segment(path, task, dataset, backbone):
    # predictor, metadata = setup_modules(dataset, backbone)
    predictor = PREDICTORS[backbone][dataset]
    metadata = METADATA[backbone][dataset]
    img = cv2.imread(path)
    width = WIDTH_DICT[KEY_DICT[dataset]]
    img = imutils.resize(img, width=width)
    out, out_map = TASK_INFER[task](img, predictor, metadata)
    out = Image.fromarray(out.get_image())
    out_map = Image.fromarray(out_map.get_image())
    return out, out_map

title = "OneFormer: One Transformer to Rule Universal Image Segmentation"

description = "<p style='font-size: 12px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' target='_blank'>Jitesh Jain</a> <a href='https://chrisjuniorli.github.io/' target='_blank'>Jiachen Li<sup>*</sup></a> <a href='https://www.linkedin.com/in/mtchiu/' target='_blank'>MangTik Chiu<sup>*</sup></a> <a href='https://alihassanijr.com/' target='_blank'>Ali Hassani</a> <a href='https://www.linkedin.com/in/nukich74/' target='_blank'>Nikita Orlov</a> <a href='https://www.humphreyshi.com/home' target='_blank'>Humphrey Shi</a></p>" \
            + "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/oneformer/' target='_blank'>Project Page</a> | <a href='https://arxiv.org/abs/2211.06220' target='_blank'>ArXiv Paper</a> | <a href='https://github.com/SHI-Labs/OneFormer' target='_blank'>Github Repo</a></p>" \
            + + "<p style='text-align: center; margin: 5px; font-size: 14px; font-weight: w300;'>  \
                OneFormer is the first multi-task universal image segmentation framework based on transformers. Our single OneFormer model achieves state-of-the-art performance across all three segmentation tasks with a single task-conditioned joint training process. OneFormer uses a task token to condition the model on the task in focus, making our architecture task-guided for training, and task-dynamic for inference, all with a single model. We believe OneFormer is a significant step towards making image segmentation more universal and accessible.\
                </p>" \
            + "<p style='text-align: center; font-size: 14px; margin: 5px; font-weight: w300;'> [Note: Inference on CPU may take upto 2 minutes. On a single RTX A6000 GPU, OneFormer is able to inference at more than 15 FPS.]</p>"

# description = "<p style='color: #E0B941; font-size: 16px; font-weight: w600; text-align: center'> <a style='color: #E0B941;' href='https://praeclarumjj3.github.io/oneformer/' target='_blank'>Project Page</a> | <a style='color: #E0B941;' href='https://arxiv.org/abs/2211.06220' target='_blank'>OneFormer: One Transformer to Rule Universal Image Segmentation</a> | <a style='color: #E0B941;' href='https://github.com/SHI-Labs/OneFormer' target='_blank'>Github</a></p>" \
#             + "<p style='color:royalblue; margin: 10px; font-size: 16px; font-weight: w400;'>  \
#                 [Note: Inference on CPU may take upto 2 minutes.] This is the official gradio demo for our paper <span style='color:#E0B941;'>OneFormer: One Transformer to Rule Universal Image Segmentation</span> To use <span style='color:#E0B941;'>OneFormer</span>: <br> \
#                 (1) <span style='color:#E0B941;'>Upload an Image</span> or <span style='color:#E0B941;'> select a sample image from the examples</span> <br>  \
#                 (2) Select the value of the <span style='color:#E0B941;'>Task Token Input</span>. <br>\
#                 (3) Select the <span style='color:#E0B941;'>Model</span> and <span style='color:#E0B941;'>Backbone</span>. </p>"

# article = 

# css = ".image-preview {height: 32rem; width: auto;} .output-image {height: 32rem; width: auto;} .panel-buttons { display: flex; flex-direction: row;}"

setup_modules()

gradio_inputs = [gr.Image(source="upload", tool=None, label="Input Image",type="filepath"),
            gr.Radio(choices=["the task is panoptic" ,"the task is instance", "the task is semantic"], type="value", value="the task is panoptic", label="Task Token Input"),
            gr.Radio(choices=["COCO (133 classes)" ,"Cityscapes (19 classes)", "ADE20K (150 classes)"], type="value", value="COCO (133 classes)", label="Model"),
            gr.Radio(choices=["DiNAT-L" ,"Swin-L"], type="value", value="DiNAT-L", label="Backbone"),
            ]
gradio_outputs = [gr.Image(type="pil", label="Segmentation Overlay"), gr.Image(type="pil", label="Segmentation Map")]


examples = [["examples/coco.jpeg", "the task is panoptic", "COCO (133 classes)", "DiNAT-L"],
            ["examples/cityscapes.png", "the task is panoptic", "Cityscapes (19 classes)", "DiNAT-L"],
            ["examples/ade20k.jpeg", "the task is panoptic", "ADE20K (150 classes)", "DiNAT-L"]]


iface = gr.Interface(fn=segment, inputs=gradio_inputs,
                     outputs=gradio_outputs,
                     examples_per_page=5,
                     allow_flagging="never",
                     examples=examples, title=title,
                     description=description)

iface.launch(enable_queue=True, server_name="0.0.0.0")