Spaces:
Runtime error
Runtime error
from PIL import Image | |
import gradio as gr | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
import gc | |
controlnet = [ControlNetModel.from_pretrained("ioclab/connow", torch_dtype=torch.float16, use_safetensors=True),ControlNetModel.from_pretrained( "lllyasviel/control_v11p_sd15_seg" , torch_dtype=torch.float16),] | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"andite/anything-v4.0", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# pipe.enable_xformers_memory_efficient_attention() | |
# pipe.enable_model_cpu_offload() | |
# pipe.enable_attention_slicing() | |
def infer( | |
prompt, | |
negative_prompt, | |
conditioning_image, | |
seg_image, | |
num_inference_steps=30, | |
size=768, | |
guidance_scale=7.0, | |
seed=1234, | |
ill=0.6, | |
seg=1 | |
): | |
conditioning_image = Image.fromarray(conditioning_image) | |
# conditioning_image = conditioning_image_raw.convert('L') | |
seg_image= Image.fromarray(seg_image) | |
g_cpu = torch.Generator() | |
if seed == -1: | |
generator = g_cpu.manual_seed(g_cpu.seed()) | |
else: | |
generator = g_cpu.manual_seed(seed) | |
isa = [conditioning_image,seg_image] | |
output_image = pipe( | |
prompt, | |
isa, | |
height=size, | |
width=size, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=[ill,seg], | |
).images[0] | |
del conditioning_image, conditioning_image_raw,seg_image | |
gc.collect() | |
return output_image | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# ControlNet on Brightness | |
This is a demo on ControlNet based on brightness. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
) | |
conditioning_image = gr.Image( | |
label="Conditioning Image", | |
) | |
seg_image = gr.Image( | |
label="(Optional)seg Image", | |
) | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
10, 40, 20, | |
step=1, | |
label="Steps", | |
) | |
size = gr.Slider( | |
256, 768, 512, | |
step=128, | |
label="Size", | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label='Guidance Scale', | |
minimum=0.1, | |
maximum=30.0, | |
value=7.0, | |
step=0.1 | |
) | |
seed = gr.Slider( | |
label='Seed', | |
value=-1, | |
minimum=-1, | |
maximum=2147483647, | |
step=1, | |
# randomize=True | |
) | |
with gr.Row(): | |
ill = gr.Slider( | |
label='controlnet_ILL_scale', | |
minimum=0, | |
maximum=1, | |
value=0.6, | |
step=0.05 | |
) | |
seg = gr.Slider( | |
label='controlnet_SEG_scale', | |
value=1, | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
# randomize=True | |
) | |
submit_btn = gr.Button( | |
value="Submit", | |
variant="primary" | |
) | |
with gr.Column(min_width=300): | |
output = gr.Image( | |
label="Result", | |
) | |
submit_btn.click( | |
fn=infer, | |
inputs=[ | |
prompt, negative_prompt, conditioning_image,seg_image, num_inference_steps, size, guidance_scale, seed,ill,seg | |
], | |
outputs=output | |
) | |
gr.Markdown( | |
""" | |
* [Dataset](https://huggingface.co/datasets/ioclab/grayscale_image_aesthetic_3M) Note that this was handled extra, and a preview version of the processing is here | |
[Anime Dataset](https://huggingface.co/datasets/ioclab/lighttestout) [Nature Dataset] (https://huggingface.co/datasets/ioclab/light) | |
* [Diffusers model](https://huggingface.co/ioclab/connow/tree/main), [Web UI model](https://huggingface.co/ioclab/control_v1u_sd15_illumination_webui) | |
* [Training Report](https://huggingface.co/ioclab/control_v1u_sd15_illumination_webui), [Doc(Chinese)](https://aigc.ioclab.com/sd-showcase/light_controlnet.html) | |
""") | |
demo.launch() |