File size: 4,562 Bytes
ad3ee60
 
19327c9
ad3ee60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19327c9
 
ad3ee60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb14311
ad3ee60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19327c9
 
ad3ee60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import json
import random
import torch
import matplotlib.pyplot as plt
import matplotlib
import numpy as np

from prismer.utils import create_ade20k_label_colormap

obj_label_map = torch.load('prismer/dataset/detection_features.pt')['labels']
coco_label_map = torch.load('prismer/dataset/coco_features.pt')['labels']
ade_color = create_ade20k_label_colormap()


def islight(rgb):
    r, g, b = rgb
    hsp = np.sqrt(0.299 * (r * r) + 0.587 * (g * g) + 0.114 * (b * b))
    if hsp > 127.5:
        return True
    else:
        return False


def depth_prettify(file_path):
    depth = plt.imread(file_path)
    plt.imsave(file_path, depth, cmap='rainbow')


def obj_detection_prettify(rgb_path, path_name):
    rgb = plt.imread(rgb_path)
    obj_labels = plt.imread(path_name)
    obj_labels_dict = json.load(open(path_name.replace('.png', '.json')))

    plt.imshow(rgb)

    num_objs = np.unique(obj_labels)[:-1].max()
    plt.imshow(obj_labels, cmap='terrain', vmax=num_objs + 1 / 255., alpha=0.8)
    cmap = matplotlib.colormaps.get_cmap('terrain')
    for i in np.unique(obj_labels)[:-1]:
        obj_idx_all = np.where(obj_labels == i)
        x, y = obj_idx_all[1].mean(), obj_idx_all[0].mean()
        obj_name = obj_label_map[obj_labels_dict[str(int(i * 255))]]
        obj_name = obj_name.split(',')[0]
        if islight([c*255 for c in cmap(i / num_objs)[:3]]):
            plt.text(x, y, obj_name, c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
        else:
            plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)

    plt.axis('off')
    plt.savefig(path_name, bbox_inches='tight', transparent=True, pad_inches=0)
    plt.close()


def seg_prettify(rgb_path, file_name):
    rgb = plt.imread(rgb_path)
    seg_labels = plt.imread(file_name)

    plt.imshow(rgb)

    seg_map = np.zeros(list(seg_labels.shape) + [3], dtype=np.int16)
    for i in np.unique(seg_labels):
        seg_map[seg_labels == i] = ade_color[int(i * 255)]

    plt.imshow(seg_map, alpha=0.8)

    for i in np.unique(seg_labels):
        obj_idx_all = np.where(seg_labels == i)
        obj_idx = random.randint(0, len(obj_idx_all[0]))
        x, y = obj_idx_all[1][obj_idx], obj_idx_all[0][obj_idx]
        obj_name = coco_label_map[int(i * 255)]
        obj_name = obj_name.split(',')[0]
        if islight(seg_map[int(y), int(x)]):
            plt.text(x, y, obj_name, c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
        else:
            plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)

    plt.axis('off')
    plt.savefig(file_name, bbox_inches='tight', transparent=True, pad_inches=0)
    plt.close()


def ocr_detection_prettify(rgb_path, file_name):
    if os.path.exists(file_name):
        rgb = plt.imread(rgb_path)
        ocr_labels = plt.imread(file_name)
        ocr_labels_dict = torch.load(file_name.replace('.png', '.pt'))

        plt.imshow(rgb)
        plt.imshow(ocr_labels, cmap='gray', alpha=0.8)

        for i in np.unique(ocr_labels)[:-1]:
            text_idx_all = np.where(ocr_labels == i)
            x, y = text_idx_all[1].mean(), text_idx_all[0].mean()
            text = ocr_labels_dict[int(i * 255)]['text']
            plt.text(x, y, text, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)

        plt.axis('off')
        plt.savefig(file_name, bbox_inches='tight', transparent=True, pad_inches=0)
        plt.close()
    else:
        rgb = plt.imread(rgb_path)
        ocr_labels = np.ones_like(rgb, dtype=np.float32())

        plt.imshow(rgb)
        plt.imshow(ocr_labels, cmap='gray', alpha=0.8)

        x, y = rgb.shape[1] / 2, rgb.shape[0] / 2
        plt.text(x, y, 'No text detected', c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
        plt.axis('off')

        os.makedirs(os.path.dirname(file_name), exist_ok=True)
        plt.savefig(file_name, bbox_inches='tight', transparent=True, pad_inches=0)
        plt.close()


def label_prettify(rgb_path, expert_paths):
    for expert_path in expert_paths:
        if 'depth' in expert_path:
            depth_prettify(expert_path)
        elif 'seg' in expert_path:
            seg_prettify(rgb_path, expert_path)
        elif 'ocr' in expert_path:
            ocr_detection_prettify(rgb_path, expert_path)
        elif 'obj' in expert_path:
            obj_detection_prettify(rgb_path, expert_path)