Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import concurrent.futures | |
import os | |
import pathlib | |
import shlex | |
import shutil | |
import subprocess | |
import sys | |
import hashlib | |
from typing import Tuple | |
try: | |
import ruamel_yaml as yaml | |
except ModuleNotFoundError: | |
import ruamel.yaml as yaml | |
import cv2 | |
import torch | |
from label_prettify import label_prettify | |
repo_dir = pathlib.Path(__file__).parent | |
submodule_dir = repo_dir / 'prismer' | |
sys.path.insert(0, submodule_dir.as_posix()) | |
from dataset import create_dataset, create_loader | |
from dataset.utils import pre_question | |
from model.prismer_caption import PrismerCaption | |
from model.prismer_vqa import PrismerVQA | |
from model.modules.utils import interpolate_pos_embed | |
def download_models() -> None: | |
if not pathlib.Path('prismer/experts/expert_weights/').exists(): | |
subprocess.run(shlex.split('python download_checkpoints.py --download_experts=True'), cwd='prismer') | |
model_names = [ | |
'vqa_prismer_base', | |
'vqa_prismer_large', | |
'pretrain_prismer_base', | |
'pretrain_prismer_large', | |
] | |
for model_name in model_names: | |
if pathlib.Path(f'prismer/logging/{model_name}').exists(): | |
continue | |
subprocess.run(shlex.split(f'python download_checkpoints.py --download_models={model_name}'), cwd='prismer') | |
def build_deformable_conv() -> None: | |
subprocess.run(shlex.split('sh make.sh'), cwd='prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops') | |
def run_expert(expert_name: str): | |
env = os.environ.copy() | |
if 'PYTHONPATH' in env: | |
env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}' | |
else: | |
env['PYTHONPATH'] = submodule_dir.as_posix() | |
subprocess.run(shlex.split(f'python experts/generate_{expert_name}.py'), | |
cwd='prismer', | |
env=env, | |
check=True) | |
def compute_md5(image_path: str) -> str: | |
with open(image_path, 'rb') as f: | |
s = f.read() | |
return hashlib.md5(s).hexdigest() | |
def run_experts(image_path: str) -> Tuple[str, Tuple[str, ...]]: | |
im_name = compute_md5(image_path) | |
out_path = submodule_dir / 'helpers' / 'images' / f'{im_name}.jpg' | |
keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection'] | |
results = [pathlib.Path('prismer/helpers/labels') / key / f'helpers/images/{im_name}.png' for key in keys] | |
results_pretty = [pathlib.Path('prismer/helpers/labels') / key / f'helpers/images/{im_name}_p.png' for key in keys] | |
out_paths = tuple(path.as_posix() for path in results) | |
pretty_paths = tuple(path.as_posix() for path in results_pretty) | |
config = yaml.load(open('prismer/configs/experts.yaml', 'r'), Loader=yaml.Loader) | |
config['im_name'] = im_name | |
with open('prismer/configs/experts.yaml', 'w') as yaml_file: | |
yaml.dump(config, yaml_file, default_flow_style=False) | |
if not os.path.exists(out_paths[0]): | |
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path)) | |
# paralleled inference | |
expert_names = ['edge', 'normal', 'objdet', 'ocrdet', 'segmentation'] | |
run_expert('depth') | |
with concurrent.futures.ProcessPoolExecutor() as executor: | |
executor.map(run_expert, expert_names) | |
executor.shutdown(wait=True) | |
# no parallelization just to be safe | |
# expert_names = ['depth', 'edge', 'normal', 'objdet', 'ocrdet', 'segmentation'] | |
# for exp in expert_names: | |
# run_expert(exp) | |
label_prettify(image_path, out_paths) | |
return im_name, pretty_paths | |
class Model: | |
def __init__(self): | |
self.config = None | |
self.model = None | |
self.tokenizer = None | |
self.model_name = '' | |
self.exp_name = '' | |
self.mode = '' | |
def set_model(self, exp_name: str, mode: str) -> None: | |
if exp_name == self.exp_name and mode == self.mode: | |
return | |
# load checkpoints | |
model_name = exp_name.lower().replace('-', '_') | |
if mode == 'caption': | |
config = { | |
'dataset': 'demo', | |
'data_path': 'prismer/helpers', | |
'label_path': 'prismer/helpers/labels', | |
'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'], | |
'image_resolution': 480, | |
'prismer_model': model_name, | |
'freeze': 'freeze_vision', | |
'prefix': '', | |
} | |
model = PrismerCaption(config) | |
state_dict = torch.load(f'prismer/logging/pretrain_{model_name}/pytorch_model.bin', map_location='cuda:0') | |
state_dict['expert_encoder.positional_embedding'] = interpolate_pos_embed(state_dict['expert_encoder.positional_embedding'], | |
len(model.expert_encoder.positional_embedding)) | |
elif mode == 'vqa': | |
config = { | |
'dataset': 'demo', | |
'data_path': 'prismer/helpers', | |
'label_path': 'prismer/helpers/labels', | |
'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'], | |
'image_resolution': 480, | |
'prismer_model': model_name, | |
'freeze': 'freeze_vision', | |
'prefix': '', | |
} | |
model = PrismerVQA(config) | |
state_dict = torch.load(f'prismer/logging/vqa_{model_name}/pytorch_model.bin', map_location='cuda:0') | |
state_dict['expert_encoder.positional_embedding'] = interpolate_pos_embed(state_dict['expert_encoder.positional_embedding'], | |
len(model.expert_encoder.positional_embedding)) | |
model.load_state_dict(state_dict) | |
model = model.half() | |
model.eval() | |
self.config = config | |
self.model = model.to('cuda:0') | |
self.tokenizer = model.tokenizer | |
self.exp_name = exp_name | |
self.mode = mode | |
def run_caption_model(self, exp_name: str, im_name: str) -> str: | |
self.set_model(exp_name, 'caption') | |
self.config['im_name'] = im_name | |
_, test_dataset = create_dataset('caption', self.config) | |
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False) | |
experts, _ = next(iter(test_loader)) | |
for exp in experts: | |
if exp == 'obj_detection': | |
experts[exp]['label'] = experts['obj_detection']['label'].to('cuda:0') | |
experts[exp]['instance'] = experts['obj_detection']['instance'].to('cuda:0') | |
else: | |
experts[exp] = experts[exp].to('cuda:0') | |
captions = self.model(experts, train=False, prefix=self.config['prefix']) | |
captions = self.tokenizer(captions, max_length=30, padding='max_length', return_tensors='pt').input_ids | |
caption = captions.to(experts['rgb'].device)[0] | |
caption = self.tokenizer.decode(caption, skip_special_tokens=True) | |
caption = caption.capitalize() + '.' | |
return caption | |
def run_caption(self, image_path: str, model_name: str) -> tuple[str | None, ...]: | |
im_name, pretty_paths = run_experts(image_path) | |
caption = self.run_caption_model(model_name, im_name) | |
return caption, *pretty_paths | |
def run_vqa_model(self, exp_name: str, im_name: str, question: str) -> str: | |
self.set_model(exp_name, 'vqa') | |
self.config['im_name'] = im_name | |
_, test_dataset = create_dataset('caption', self.config) | |
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False) | |
experts, _ = next(iter(test_loader)) | |
for exp in experts: | |
if exp == 'obj_detection': | |
experts[exp]['label'] = experts['obj_detection']['label'].to('cuda:0') | |
experts[exp]['instance'] = experts['obj_detection']['instance'].to('cuda:0') | |
else: | |
experts[exp] = experts[exp].to('cuda:0') | |
question = pre_question(question) | |
answer = self.model(experts, [question], train=False, inference='generate') | |
answer = self.tokenizer(answer, max_length=30, padding='max_length', return_tensors='pt').input_ids | |
answer = answer.to(experts['rgb'].device)[0] | |
answer = self.tokenizer.decode(answer, skip_special_tokens=True) | |
answer = answer.capitalize() + '.' | |
return answer | |
def run_vqa(self, image_path: str, model_name: str, question: str) -> tuple[str | None, ...]: | |
im_name, pretty_paths = run_experts(image_path) | |
answer = self.run_vqa_model(model_name, im_name, question) | |
return answer, *pretty_paths | |