prismer / label_prettify.py
shikunl's picture
Update with md5sum and half precision inference
359b3f0
import os
import json
import random
import torch
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import shutil
from prismer.utils import create_ade20k_label_colormap
matplotlib.use('agg')
obj_label_map = torch.load('prismer/dataset/detection_features.pt')['labels']
coco_label_map = torch.load('prismer/dataset/coco_features.pt')['labels']
ade_color = create_ade20k_label_colormap()
def islight(rgb):
r, g, b = rgb
hsp = np.sqrt(0.299 * (r * r) + 0.587 * (g * g) + 0.114 * (b * b))
if hsp > 127.5:
return True
else:
return False
def depth_prettify(file_path):
pretty_path = file_path.replace('.png', '_p.png')
if not os.path.exists(pretty_path):
depth = plt.imread(file_path)
plt.imsave(pretty_path, depth, cmap='rainbow')
def obj_detection_prettify(rgb_path, path_name):
pretty_path = path_name.replace('.png', '_p.png')
if not os.path.exists(pretty_path):
rgb = plt.imread(rgb_path)
obj_labels = plt.imread(path_name)
obj_labels_dict = json.load(open(path_name.replace('.png', '.json')))
plt.imshow(rgb)
if len(np.unique(obj_labels)) == 1:
plt.axis('off')
plt.savefig(path_name, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
else:
num_objs = np.unique(obj_labels)[:-1].max()
plt.imshow(obj_labels, cmap='terrain', vmax=num_objs + 1 / 255., alpha=0.8)
cmap = matplotlib.colormaps.get_cmap('terrain')
for i in np.unique(obj_labels)[:-1]:
obj_idx_all = np.where(obj_labels == i)
x, y = obj_idx_all[1].mean(), obj_idx_all[0].mean()
obj_name = obj_label_map[obj_labels_dict[str(int(i * 255))]]
obj_name = obj_name.split(',')[0]
if islight([c*255 for c in cmap(i / num_objs)[:3]]):
plt.text(x, y, obj_name, c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
else:
plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)
plt.axis('off')
plt.savefig(pretty_path, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
def seg_prettify(rgb_path, file_name):
pretty_path = file_name.replace('.png', '_p.png')
if not os.path.exists(pretty_path):
rgb = plt.imread(rgb_path)
seg_labels = plt.imread(file_name)
plt.imshow(rgb)
seg_map = np.zeros(list(seg_labels.shape) + [3], dtype=np.int16)
for i in np.unique(seg_labels):
seg_map[seg_labels == i] = ade_color[int(i * 255)]
plt.imshow(seg_map, alpha=0.8)
for i in np.unique(seg_labels):
obj_idx_all = np.where(seg_labels == i)
if len(obj_idx_all[0]) > 20: # only plot the label with its number of labelled pixel more than 20
obj_idx = random.randint(0, len(obj_idx_all[0]) - 1)
x, y = obj_idx_all[1][obj_idx], obj_idx_all[0][obj_idx]
obj_name = coco_label_map[int(i * 255)]
obj_name = obj_name.split(',')[0]
if islight(seg_map[int(y), int(x)]):
plt.text(x, y, obj_name, c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
else:
plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)
plt.axis('off')
plt.savefig(pretty_path, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
def ocr_detection_prettify(rgb_path, file_name):
pretty_path = file_name.replace('.png', '_p.png')
if not os.path.exists(pretty_path):
if os.path.exists(file_name):
rgb = plt.imread(rgb_path)
ocr_labels = plt.imread(file_name)
ocr_labels_dict = torch.load(file_name.replace('.png', '.pt'))
plt.imshow(rgb)
plt.imshow(ocr_labels, cmap='gray', alpha=0.8)
for i in np.unique(ocr_labels)[:-1]:
text_idx_all = np.where(ocr_labels == i)
x, y = text_idx_all[1].mean(), text_idx_all[0].mean()
text = ocr_labels_dict[int(i * 255)]['text']
plt.text(x, y, text, c='white', horizontalalignment='center', verticalalignment='center', clip_on=True)
plt.axis('off')
plt.savefig(pretty_path, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
else:
rgb = plt.imread(rgb_path)
ocr_labels = np.ones_like(rgb, dtype=np.float32())
plt.imshow(rgb)
plt.imshow(ocr_labels, cmap='gray', alpha=0.8)
x, y = rgb.shape[1] / 2, rgb.shape[0] / 2
plt.text(x, y, 'No text detected', c='black', horizontalalignment='center', verticalalignment='center', clip_on=True)
plt.axis('off')
os.makedirs(os.path.dirname(file_name), exist_ok=True)
plt.savefig(pretty_path, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close()
def label_prettify(rgb_path, expert_paths):
for expert_path in expert_paths:
if 'depth' in expert_path:
depth_prettify(expert_path)
elif 'seg' in expert_path:
seg_prettify(rgb_path, expert_path)
elif 'ocr' in expert_path:
ocr_detection_prettify(rgb_path, expert_path)
elif 'obj' in expert_path:
obj_detection_prettify(rgb_path, expert_path)
else:
pretty_path = expert_path.replace('.png', '_p.png')
if not os.path.exists(pretty_path):
shutil.copyfile(expert_path, pretty_path)