Spaces:
Sleeping
Sleeping
Test experts
Browse files- app_caption.py +11 -15
- prismer_model.py +30 -87
app_caption.py
CHANGED
@@ -4,7 +4,6 @@ from __future__ import annotations
|
|
4 |
|
5 |
import os
|
6 |
import pathlib
|
7 |
-
|
8 |
import gradio as gr
|
9 |
|
10 |
from prismer_model import Model
|
@@ -16,9 +15,7 @@ def create_demo():
|
|
16 |
with gr.Row():
|
17 |
with gr.Column():
|
18 |
image = gr.Image(label='Input', type='filepath')
|
19 |
-
model_name = gr.Dropdown(label='Model',
|
20 |
-
choices=['prismer_base'],
|
21 |
-
value='prismer_base')
|
22 |
run_button = gr.Button('Run')
|
23 |
with gr.Column(scale=1.5):
|
24 |
caption = gr.Text(label='Caption')
|
@@ -32,23 +29,22 @@ def create_demo():
|
|
32 |
ocr = gr.Image(label='OCR Detection')
|
33 |
|
34 |
inputs = [image, model_name]
|
35 |
-
outputs = [
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
paths = sorted(pathlib.Path('prismer/images').glob('*'))
|
46 |
examples = [[path.as_posix(), 'prismer_base'] for path in paths]
|
47 |
gr.Examples(examples=examples,
|
48 |
inputs=inputs,
|
49 |
outputs=outputs,
|
50 |
-
fn=model.run_caption
|
51 |
-
cache_examples=os.getenv('SYSTEM') == 'spaces')
|
52 |
|
53 |
run_button.click(fn=model.run_caption, inputs=inputs, outputs=outputs)
|
54 |
|
|
|
4 |
|
5 |
import os
|
6 |
import pathlib
|
|
|
7 |
import gradio as gr
|
8 |
|
9 |
from prismer_model import Model
|
|
|
15 |
with gr.Row():
|
16 |
with gr.Column():
|
17 |
image = gr.Image(label='Input', type='filepath')
|
18 |
+
model_name = gr.Dropdown(label='Model', choices=['prismer_base'], value='prismer_base')
|
|
|
|
|
19 |
run_button = gr.Button('Run')
|
20 |
with gr.Column(scale=1.5):
|
21 |
caption = gr.Text(label='Caption')
|
|
|
29 |
ocr = gr.Image(label='OCR Detection')
|
30 |
|
31 |
inputs = [image, model_name]
|
32 |
+
outputs = [caption, depth, edge, normals, segmentation, object_detection, ocr]
|
33 |
+
|
34 |
+
# paths = sorted(pathlib.Path('prismer/images').glob('*'))
|
35 |
+
# examples = [[path.as_posix(), 'prismer_base'] for path in paths]
|
36 |
+
# gr.Examples(examples=examples,
|
37 |
+
# inputs=inputs,
|
38 |
+
# outputs=outputs,
|
39 |
+
# fn=model.run_caption,
|
40 |
+
# cache_examples=os.getenv('SYSTEM') == 'spaces')
|
41 |
|
42 |
paths = sorted(pathlib.Path('prismer/images').glob('*'))
|
43 |
examples = [[path.as_posix(), 'prismer_base'] for path in paths]
|
44 |
gr.Examples(examples=examples,
|
45 |
inputs=inputs,
|
46 |
outputs=outputs,
|
47 |
+
fn=model.run_caption)
|
|
|
48 |
|
49 |
run_button.click(fn=model.run_caption, inputs=inputs, outputs=outputs)
|
50 |
|
prismer_model.py
CHANGED
@@ -20,32 +20,22 @@ from model.prismer_caption import PrismerCaption
|
|
20 |
|
21 |
def download_models() -> None:
|
22 |
if not pathlib.Path('prismer/experts/expert_weights/').exists():
|
23 |
-
subprocess.run(shlex.split(
|
24 |
-
|
25 |
-
cwd='prismer')
|
26 |
model_names = [
|
27 |
-
'vqa_prismer_base',
|
28 |
-
'vqa_prismer_large',
|
29 |
-
'vqa_prismerz_base',
|
30 |
-
'vqa_prismerz_large',
|
31 |
-
'caption_prismerz_base',
|
32 |
-
'caption_prismerz_large',
|
33 |
'caption_prismer_base',
|
34 |
'caption_prismer_large',
|
35 |
]
|
36 |
for model_name in model_names:
|
37 |
if pathlib.Path(f'prismer/logging/{model_name}').exists():
|
38 |
continue
|
39 |
-
subprocess.run(shlex.split(
|
40 |
-
f'python download_checkpoints.py --download_models={model_name}'),
|
41 |
-
cwd='prismer')
|
42 |
|
43 |
|
44 |
def build_deformable_conv() -> None:
|
45 |
-
subprocess.run(
|
46 |
-
shlex.split('sh make.sh'),
|
47 |
-
cwd=
|
48 |
-
'prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops')
|
49 |
|
50 |
|
51 |
def run_experts(image_path: str) -> tuple[str | None, ...]:
|
@@ -56,40 +46,18 @@ def run_experts(image_path: str) -> tuple[str | None, ...]:
|
|
56 |
out_path = image_dir / 'image.jpg'
|
57 |
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))
|
58 |
|
59 |
-
expert_names = [
|
60 |
-
'depth',
|
61 |
-
'edge',
|
62 |
-
'normal',
|
63 |
-
'objdet',
|
64 |
-
'ocrdet',
|
65 |
-
'segmentation',
|
66 |
-
]
|
67 |
for expert_name in expert_names:
|
68 |
env = os.environ.copy()
|
69 |
if 'PYTHONPATH' in env:
|
70 |
env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}'
|
71 |
else:
|
72 |
env['PYTHONPATH'] = submodule_dir.as_posix()
|
73 |
-
subprocess.run(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
keys = [
|
80 |
-
'depth',
|
81 |
-
'edge',
|
82 |
-
'normal',
|
83 |
-
'seg_coco',
|
84 |
-
'obj_detection',
|
85 |
-
'ocr_detection',
|
86 |
-
]
|
87 |
-
results = [
|
88 |
-
pathlib.Path('prismer/helpers/labels') / key /
|
89 |
-
'helpers/images/image.png' for key in keys
|
90 |
-
]
|
91 |
-
return tuple(path.as_posix() if path.exists() else None
|
92 |
-
for path in results)
|
93 |
|
94 |
|
95 |
class Model:
|
@@ -102,67 +70,42 @@ class Model:
|
|
102 |
def set_model(self, exp_name: str) -> None:
|
103 |
if exp_name == self.exp_name:
|
104 |
return
|
|
|
105 |
config = {
|
106 |
-
'dataset':
|
107 |
-
'
|
108 |
-
'
|
109 |
-
'
|
110 |
-
'
|
111 |
-
'
|
112 |
-
'
|
113 |
-
|
114 |
-
'normal',
|
115 |
-
'seg_coco',
|
116 |
-
'edge',
|
117 |
-
'obj_detection',
|
118 |
-
'ocr_detection',
|
119 |
-
],
|
120 |
-
'image_resolution':
|
121 |
-
480,
|
122 |
-
'prismer_model':
|
123 |
-
'prismer_base',
|
124 |
-
'freeze':
|
125 |
-
'freeze_vision',
|
126 |
-
'prefix':
|
127 |
-
'A picture of',
|
128 |
}
|
|
|
129 |
model = PrismerCaption(config)
|
130 |
-
state_dict = torch.load(
|
131 |
-
f'prismer/logging/caption_{exp_name}/pytorch_model.bin',
|
132 |
-
map_location='cuda:0')
|
133 |
model.load_state_dict(state_dict)
|
134 |
model.eval()
|
135 |
-
tokenizer = model.tokenizer
|
136 |
|
137 |
self.config = config
|
138 |
self.model = model
|
139 |
-
self.tokenizer = tokenizer
|
140 |
self.exp_name = exp_name
|
141 |
|
142 |
@torch.inference_mode()
|
143 |
def run_caption_model(self, exp_name: str) -> str:
|
144 |
self.set_model(exp_name)
|
145 |
-
|
146 |
_, test_dataset = create_dataset('caption', self.config)
|
147 |
-
test_loader = create_loader(test_dataset,
|
148 |
-
batch_size=1,
|
149 |
-
num_workers=4,
|
150 |
-
train=False)
|
151 |
experts, _ = next(iter(test_loader))
|
152 |
-
captions = self.model(experts,
|
153 |
-
|
154 |
-
prefix=self.config['prefix'])
|
155 |
-
captions = self.tokenizer(captions,
|
156 |
-
max_length=30,
|
157 |
-
padding='max_length',
|
158 |
-
return_tensors='pt').input_ids
|
159 |
caption = captions.to(experts['rgb'].device)[0]
|
160 |
caption = self.tokenizer.decode(caption, skip_special_tokens=True)
|
161 |
caption = caption.capitalize() + '.'
|
162 |
return caption
|
163 |
|
164 |
-
def run_caption(self, image_path: str,
|
165 |
-
model_name: str) -> tuple[str | None, ...]:
|
166 |
out_paths = run_experts(image_path)
|
167 |
-
caption = self.run_caption_model(model_name)
|
168 |
-
return
|
|
|
20 |
|
21 |
def download_models() -> None:
|
22 |
if not pathlib.Path('prismer/experts/expert_weights/').exists():
|
23 |
+
subprocess.run(shlex.split('python download_checkpoints.py --download_experts=True'), cwd='prismer')
|
24 |
+
|
|
|
25 |
model_names = [
|
26 |
+
# 'vqa_prismer_base',
|
27 |
+
# 'vqa_prismer_large',
|
|
|
|
|
|
|
|
|
28 |
'caption_prismer_base',
|
29 |
'caption_prismer_large',
|
30 |
]
|
31 |
for model_name in model_names:
|
32 |
if pathlib.Path(f'prismer/logging/{model_name}').exists():
|
33 |
continue
|
34 |
+
subprocess.run(shlex.split(f'python download_checkpoints.py --download_models={model_name}'), cwd='prismer')
|
|
|
|
|
35 |
|
36 |
|
37 |
def build_deformable_conv() -> None:
|
38 |
+
subprocess.run(shlex.split('sh make.sh'), cwd='prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops')
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
def run_experts(image_path: str) -> tuple[str | None, ...]:
|
|
|
46 |
out_path = image_dir / 'image.jpg'
|
47 |
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))
|
48 |
|
49 |
+
expert_names = ['depth', 'edge', 'normal', 'objdet', 'ocrdet', 'segmentation']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
for expert_name in expert_names:
|
51 |
env = os.environ.copy()
|
52 |
if 'PYTHONPATH' in env:
|
53 |
env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}'
|
54 |
else:
|
55 |
env['PYTHONPATH'] = submodule_dir.as_posix()
|
56 |
+
subprocess.run(shlex.split(f'python experts/generate_{expert_name}.py'), cwd='prismer', env=env, check=True)
|
57 |
+
|
58 |
+
keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection']
|
59 |
+
results = [pathlib.Path('prismer/helpers/labels') / key / 'helpers/images/image.png' for key in keys]
|
60 |
+
return tuple(path.as_posix() if path.exists() else None for path in results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
class Model:
|
|
|
70 |
def set_model(self, exp_name: str) -> None:
|
71 |
if exp_name == self.exp_name:
|
72 |
return
|
73 |
+
|
74 |
config = {
|
75 |
+
'dataset': 'demo',
|
76 |
+
'data_path': 'prismer/helpers',
|
77 |
+
'label_path': 'prismer/helpers/labels',
|
78 |
+
'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'],
|
79 |
+
'image_resolution': 480,
|
80 |
+
'prismer_model': 'prismer_base',
|
81 |
+
'freeze': 'freeze_vision',
|
82 |
+
'prefix': 'A picture of',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
}
|
84 |
+
|
85 |
model = PrismerCaption(config)
|
86 |
+
state_dict = torch.load(f'prismer/logging/caption_{exp_name}/pytorch_model.bin', map_location='cuda:0')
|
|
|
|
|
87 |
model.load_state_dict(state_dict)
|
88 |
model.eval()
|
|
|
89 |
|
90 |
self.config = config
|
91 |
self.model = model
|
92 |
+
self.tokenizer = model.tokenizer
|
93 |
self.exp_name = exp_name
|
94 |
|
95 |
@torch.inference_mode()
|
96 |
def run_caption_model(self, exp_name: str) -> str:
|
97 |
self.set_model(exp_name)
|
|
|
98 |
_, test_dataset = create_dataset('caption', self.config)
|
99 |
+
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False)
|
|
|
|
|
|
|
100 |
experts, _ = next(iter(test_loader))
|
101 |
+
captions = self.model(experts, train=False, prefix=self.config['prefix'])
|
102 |
+
captions = self.tokenizer(captions, max_length=30, padding='max_length', return_tensors='pt').input_ids
|
|
|
|
|
|
|
|
|
|
|
103 |
caption = captions.to(experts['rgb'].device)[0]
|
104 |
caption = self.tokenizer.decode(caption, skip_special_tokens=True)
|
105 |
caption = caption.capitalize() + '.'
|
106 |
return caption
|
107 |
|
108 |
+
def run_caption(self, image_path: str, model_name: str) -> tuple[str | None, ...]:
|
|
|
109 |
out_paths = run_experts(image_path)
|
110 |
+
# caption = self.run_caption_model(model_name)
|
111 |
+
return None, *out_paths
|