shikunl commited on
Commit
073a46b
1 Parent(s): a8208b6
app_vqa.py CHANGED
@@ -32,11 +32,17 @@ def create_demo():
32
  outputs = [answer, depth, edge, normals, segmentation, object_detection, ocr]
33
 
34
  # paths = sorted(pathlib.Path('prismer/images').glob('*'))
35
- # examples = [[path.as_posix(), 'prismer_base'] for path in paths]
 
 
 
 
 
 
36
  # gr.Examples(examples=examples,
37
  # inputs=inputs,
38
  # outputs=outputs,
39
- # fn=model.run_caption,
40
  # cache_examples=os.getenv('SYSTEM') == 'spaces')
41
 
42
  paths = sorted(pathlib.Path('prismer/images').glob('*'))
 
32
  outputs = [answer, depth, edge, normals, segmentation, object_detection, ocr]
33
 
34
  # paths = sorted(pathlib.Path('prismer/images').glob('*'))
35
+ # ex_questions = ['What is the man on the right doing?',
36
+ # 'What is this person playing?',
37
+ # 'How many cows in this image?',
38
+ # 'What is the type of animal in this image?',
39
+ # 'What toy is it?']
40
+ #
41
+ # examples = [[path.as_posix(), 'Prismer-Base', ex_questions[i]] for i, path in enumerate(paths)]
42
  # gr.Examples(examples=examples,
43
  # inputs=inputs,
44
  # outputs=outputs,
45
+ # fn=model.run_vqa,
46
  # cache_examples=os.getenv('SYSTEM') == 'spaces')
47
 
48
  paths = sorted(pathlib.Path('prismer/images').glob('*'))
prismer/model/modules/roberta.py CHANGED
@@ -431,23 +431,6 @@ class RobertaLMHead(nn.Module):
431
 
432
 
433
  def load_decoder(name: str, config: RobertaConfig):
434
- # load pre-trained model file
435
- if name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST:
436
- model = RobertaForMaskedLM.from_pretrained(name, cache_dir='cache')
437
- else:
438
- raise RuntimeError(f"Model {name} not found")
439
-
440
- state_dict = model.state_dict()
441
- for key in list(state_dict.keys()):
442
- if 'encoder.layer' in key:
443
- new_key_ = re.sub(".attention", ".0.attention", key)
444
- new_key_ = re.sub(".intermediate", ".0.intermediate", new_key_)
445
- if 'attention' not in key:
446
- new_key_ = re.sub(".output", ".0.output", new_key_)
447
- state_dict[new_key_] = state_dict.pop(key)
448
-
449
- # load pre-trained weights
450
  roberta = RobertaForCausalLMModified(config)
451
- roberta.load_state_dict(state_dict, strict=False)
452
  return roberta
453
 
 
431
 
432
 
433
  def load_decoder(name: str, config: RobertaConfig):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434
  roberta = RobertaForCausalLMModified(config)
 
435
  return roberta
436
 
prismer_model.py CHANGED
@@ -79,7 +79,7 @@ class Model:
79
 
80
  # load checkpoints
81
  model_name = exp_name.lower().replace('-', '_')
82
- if self.mode == 'caption':
83
  config = {
84
  'dataset': 'demo',
85
  'data_path': 'prismer/helpers',
@@ -94,7 +94,7 @@ class Model:
94
  state_dict = torch.load(f'prismer/logging/pretrain_{model_name}/pytorch_model.bin', map_location='cuda:0')
95
  state_dict['expert_encoder.positional_embedding'] = interpolate_pos_embed(state_dict['expert_encoder.positional_embedding'],
96
  len(model.expert_encoder.positional_embedding))
97
- elif self.mode == 'vqa':
98
  config = {
99
  'dataset': 'demo',
100
  'data_path': 'prismer/helpers',
 
79
 
80
  # load checkpoints
81
  model_name = exp_name.lower().replace('-', '_')
82
+ if mode == 'caption':
83
  config = {
84
  'dataset': 'demo',
85
  'data_path': 'prismer/helpers',
 
94
  state_dict = torch.load(f'prismer/logging/pretrain_{model_name}/pytorch_model.bin', map_location='cuda:0')
95
  state_dict['expert_encoder.positional_embedding'] = interpolate_pos_embed(state_dict['expert_encoder.positional_embedding'],
96
  len(model.expert_encoder.positional_embedding))
97
+ elif mode == 'vqa':
98
  config = {
99
  'dataset': 'demo',
100
  'data_path': 'prismer/helpers',