Spaces:
Sleeping
Sleeping
Test 3 experts
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +7 -2
- examples/1.png +0 -0
- gradio_caption.py +34 -22
- prismer/dataset/__init__.py +43 -0
- prismer/dataset/caption_dataset.py +63 -0
- prismer/dataset/coco_features.pt +3 -0
- prismer/dataset/detection_features.pt +3 -0
- prismer/dataset/utils.py +188 -0
- prismer/dataset/vqa_dataset.py +51 -0
- prismer/demo.py +77 -0
- prismer/demo_vis.py +161 -0
- prismer/download_checkpoints.py +124 -0
- prismer/experts/depth/base_model.py +16 -0
- prismer/experts/depth/blocks.py +383 -0
- prismer/experts/depth/generate_dataset.py +32 -0
- prismer/experts/depth/models.py +124 -0
- prismer/experts/depth/vit.py +576 -0
- prismer/experts/edge/generate_dataset.py +32 -0
- prismer/experts/edge/images.py +50 -0
- prismer/experts/edge/model.py +286 -0
- prismer/experts/generate_depth.py +56 -0
- prismer/experts/generate_edge.py +57 -0
- prismer/experts/generate_normal.py +58 -0
- prismer/experts/generate_objdet.py +115 -0
- prismer/experts/generate_ocrdet.py +86 -0
- prismer/experts/generate_segmentation.py +56 -0
- prismer/experts/model_bank.py +139 -0
- prismer/experts/normal/generate_dataset.py +34 -0
- prismer/experts/normal/models/NNET.py +22 -0
- prismer/experts/normal/models/baseline.py +85 -0
- prismer/experts/normal/models/submodules/decoder.py +202 -0
- prismer/experts/normal/models/submodules/encoder.py +32 -0
- prismer/experts/normal/models/submodules/submodules.py +140 -0
- prismer/experts/normal/utils/losses.py +178 -0
- prismer/experts/normal/utils/utils.py +191 -0
- prismer/experts/obj_detection/configs/Base-CRCNN-COCO.yaml +48 -0
- prismer/experts/obj_detection/configs/O365_CRFR50_CAS_2x.yaml +15 -0
- prismer/experts/obj_detection/configs/OID_CRFR50_CAS_2x.yaml +22 -0
- prismer/experts/obj_detection/configs/Partitioned_COIM_R50_6x+2x.yaml +28 -0
- prismer/experts/obj_detection/configs/Partitioned_COI_R50_2x.yaml +29 -0
- prismer/experts/obj_detection/configs/Partitioned_COI_R50_6x.yaml +28 -0
- prismer/experts/obj_detection/configs/Partitioned_COI_R50_8x.yaml +28 -0
- prismer/experts/obj_detection/configs/Partitioned_COI_RS101_2x.yaml +46 -0
- prismer/experts/obj_detection/configs/Unified_human_OCI_R50_2x.yaml +29 -0
- prismer/experts/obj_detection/configs/Unified_learned_OCIM_R50_6x+2x.yaml +35 -0
- prismer/experts/obj_detection/configs/Unified_learned_OCIM_RS200_6x+2x.yaml +46 -0
- prismer/experts/obj_detection/configs/Unified_learned_OCI_R50_2x.yaml +29 -0
- prismer/experts/obj_detection/configs/Unified_learned_OCI_R50_6x.yaml +29 -0
- prismer/experts/obj_detection/configs/Unified_learned_OCI_R50_8x.yaml +29 -0
- prismer/experts/obj_detection/configs/Unified_learned_OCI_RS200_6x.yaml +46 -0
app.py
CHANGED
@@ -3,8 +3,14 @@ import gradio as gr
|
|
3 |
|
4 |
from gradio_caption import create_demo as create_caption
|
5 |
from gradio_vqa import create_demo as create_vqa
|
|
|
6 |
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
description = """
|
9 |
# Prismer
|
10 |
The official demo for **Prismer: A Vision-Language Model with An Ensemble of Experts**.
|
@@ -22,6 +28,5 @@ with gr.Blocks() as demo:
|
|
22 |
with gr.Tab("Visual Question Answering"):
|
23 |
create_vqa()
|
24 |
|
|
|
25 |
|
26 |
-
if __name__ == '__main__':
|
27 |
-
demo.queue().launch()
|
|
|
3 |
|
4 |
from gradio_caption import create_demo as create_caption
|
5 |
from gradio_vqa import create_demo as create_vqa
|
6 |
+
from prismer_model import build_deformable_conv, download_models
|
7 |
|
8 |
|
9 |
+
# Prepare Prismer checkpoints
|
10 |
+
download_models()
|
11 |
+
build_deformable_conv()
|
12 |
+
|
13 |
+
# Official Demo here
|
14 |
description = """
|
15 |
# Prismer
|
16 |
The official demo for **Prismer: A Vision-Language Model with An Ensemble of Experts**.
|
|
|
28 |
with gr.Tab("Visual Question Answering"):
|
29 |
create_vqa()
|
30 |
|
31 |
+
demo.queue(api_open=False).launch()
|
32 |
|
|
|
|
examples/1.png
DELETED
Binary file (750 kB)
|
|
gradio_caption.py
CHANGED
@@ -1,32 +1,44 @@
|
|
1 |
-
|
2 |
-
from PIL import Image
|
3 |
-
import tempfile
|
4 |
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
depth = model.infer_pil(image)
|
8 |
-
return depth
|
9 |
|
10 |
|
11 |
def create_demo():
|
12 |
with gr.Row():
|
13 |
-
with gr.Column(
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
with gr.Column(scale=
|
18 |
-
|
19 |
with gr.Row():
|
20 |
-
depth = gr.Image(label=
|
21 |
-
edge = gr.Image(label=
|
22 |
-
normals = gr.Image(label=
|
23 |
with gr.Row():
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
submit.click(on_submit, inputs=[rgb, model_type], outputs=[pred, depth, edge, normals, seg, obj_det, ocr_det])
|
32 |
-
examples = gr.Examples(examples=["examples/1.png"], inputs=[rgb])
|
|
|
1 |
+
from __future__ import annotations
|
|
|
|
|
2 |
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import gradio as gr
|
6 |
|
7 |
+
from prismer_model import run_experts
|
|
|
|
|
8 |
|
9 |
|
10 |
def create_demo():
|
11 |
with gr.Row():
|
12 |
+
with gr.Column():
|
13 |
+
image = gr.Image(label='Input', type='filepath')
|
14 |
+
model_name = gr.Dropdown(label='Model', choices=['prismer_base'], value='prismer_base')
|
15 |
+
run_button = gr.Button('Run')
|
16 |
+
with gr.Column(scale=1.5):
|
17 |
+
caption = gr.Text(label='Caption')
|
18 |
with gr.Row():
|
19 |
+
depth = gr.Image(label='Depth')
|
20 |
+
edge = gr.Image(label='Edge')
|
21 |
+
normals = gr.Image(label='Normals')
|
22 |
with gr.Row():
|
23 |
+
segmentation = gr.Image(label='Segmentation')
|
24 |
+
object_detection = gr.Image(label='Object Detection')
|
25 |
+
ocr = gr.Image(label='OCR Detection')
|
26 |
+
|
27 |
+
inputs = [image, model_name]
|
28 |
+
outputs = [depth, edge, normals]
|
29 |
+
|
30 |
+
paths = sorted(pathlib.Path('prismer/images').glob('*'))
|
31 |
+
examples = [[path.as_posix(), 'prismer_base'] for path in paths]
|
32 |
+
gr.Examples(examples=examples,
|
33 |
+
inputs=inputs,
|
34 |
+
outputs=outputs,
|
35 |
+
fn=run_experts,
|
36 |
+
cache_examples=os.getenv('SYSTEM') == 'spaces')
|
37 |
+
|
38 |
+
run_button.click(fn=run_experts, inputs=inputs, outputs=outputs)
|
39 |
+
|
40 |
|
41 |
+
if __name__ == '__main__':
|
42 |
+
demo = create_demo()
|
43 |
+
demo.queue().launch()
|
44 |
|
|
|
|
prismer/dataset/__init__.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
|
9 |
+
from dataset.pretrain_dataset import Pretrain
|
10 |
+
from dataset.vqa_dataset import VQA
|
11 |
+
from dataset.caption_dataset import Caption
|
12 |
+
from dataset.classification_dataset import Classification
|
13 |
+
|
14 |
+
|
15 |
+
def create_dataset(dataset, config):
|
16 |
+
if dataset == 'pretrain':
|
17 |
+
dataset = Pretrain(config)
|
18 |
+
return dataset
|
19 |
+
|
20 |
+
elif dataset == 'vqa':
|
21 |
+
train_dataset = VQA(config, train=True)
|
22 |
+
test_dataset = VQA(config, train=False)
|
23 |
+
return train_dataset, test_dataset
|
24 |
+
|
25 |
+
elif dataset == 'caption':
|
26 |
+
train_dataset = Caption(config, train=True)
|
27 |
+
test_dataset = Caption(config, train=False)
|
28 |
+
return train_dataset, test_dataset
|
29 |
+
|
30 |
+
elif dataset == 'classification':
|
31 |
+
train_dataset = Classification(config, train=True)
|
32 |
+
test_dataset = Classification(config, train=False)
|
33 |
+
return train_dataset, test_dataset
|
34 |
+
|
35 |
+
|
36 |
+
def create_loader(dataset, batch_size, num_workers, train, collate_fn=None):
|
37 |
+
data_loader = DataLoader(dataset,
|
38 |
+
batch_size=batch_size,
|
39 |
+
num_workers=num_workers,
|
40 |
+
collate_fn=collate_fn,
|
41 |
+
shuffle=True if train else False,
|
42 |
+
drop_last=True if train else False)
|
43 |
+
return data_loader
|
prismer/dataset/caption_dataset.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import glob
|
8 |
+
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
from dataset.utils import *
|
11 |
+
from PIL import ImageFile
|
12 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
13 |
+
|
14 |
+
|
15 |
+
class Caption(Dataset):
|
16 |
+
def __init__(self, config, train=True):
|
17 |
+
self.data_path = config['data_path']
|
18 |
+
self.label_path = config['label_path']
|
19 |
+
self.experts = config['experts']
|
20 |
+
self.prefix = config['prefix']
|
21 |
+
self.dataset = config['dataset']
|
22 |
+
self.transform = Transform(resize_resolution=config['image_resolution'], scale_size=[0.5, 1.0], train=train)
|
23 |
+
self.train = train
|
24 |
+
|
25 |
+
if train:
|
26 |
+
self.data_list = []
|
27 |
+
if self.dataset in ['coco', 'nocaps']:
|
28 |
+
self.data_list += json.load(open(os.path.join(self.data_path, 'coco_karpathy_train.json'), 'r'))
|
29 |
+
else:
|
30 |
+
if self.dataset == 'coco':
|
31 |
+
self.data_list = json.load(open(os.path.join(self.data_path, 'coco_karpathy_test.json'), 'r'))
|
32 |
+
elif self.dataset == 'nocaps':
|
33 |
+
self.data_list = json.load(open(os.path.join(self.data_path, 'nocaps_val.json'), 'r'))
|
34 |
+
elif self.dataset == 'demo':
|
35 |
+
data_folders = glob.glob(f'{self.data_path}/*/')
|
36 |
+
self.data_list = [{'image': data} for f in data_folders for data in glob.glob(f + '*.jpg')]
|
37 |
+
self.data_list += [{'image': data} for f in data_folders for data in glob.glob(f + '*.png')]
|
38 |
+
self.data_list += [{'image': data} for f in data_folders for data in glob.glob(f + '*.jpeg')]
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.data_list)
|
42 |
+
|
43 |
+
def __getitem__(self, index):
|
44 |
+
data = self.data_list[index]
|
45 |
+
|
46 |
+
if self.dataset == 'coco':
|
47 |
+
image, labels, labels_info = get_expert_labels(self.data_path, self.label_path, data['image'], 'vqav2', self.experts)
|
48 |
+
elif self.dataset == 'nocaps':
|
49 |
+
image, labels, labels_info = get_expert_labels(self.data_path, self.label_path, data['image'], 'nocaps', self.experts)
|
50 |
+
elif self.dataset == 'demo':
|
51 |
+
img_path_split = self.data_list[index]['image'].split('/')
|
52 |
+
img_name = img_path_split[-2] + '/' + img_path_split[-1]
|
53 |
+
image, labels, labels_info = get_expert_labels('', self.label_path, img_name, 'helpers', self.experts)
|
54 |
+
|
55 |
+
experts = self.transform(image, labels)
|
56 |
+
experts = post_label_process(experts, labels_info)
|
57 |
+
|
58 |
+
if self.train:
|
59 |
+
caption = pre_caption(self.prefix + ' ' + self.data_list[index]['caption'], max_words=30)
|
60 |
+
return experts, caption
|
61 |
+
else:
|
62 |
+
return experts, index
|
63 |
+
|
prismer/dataset/coco_features.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccf18221afe8dddef3ffb9daad31d5c7a92cdc2f2f434d77cbeb48031bc75756
|
3 |
+
size 36651
|
prismer/dataset/detection_features.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c38ba9352b2a9f832b14fdc19ac407527ffeaa2903958a73f6eb649f78119c76
|
3 |
+
size 198443
|
prismer/dataset/utils.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import json
|
10 |
+
import torch
|
11 |
+
import PIL.Image as Image
|
12 |
+
import numpy as np
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
import torchvision.transforms.functional as transforms_f
|
15 |
+
from dataset.randaugment import RandAugment
|
16 |
+
|
17 |
+
COCO_FEATURES = torch.load('dataset/coco_features.pt')['features']
|
18 |
+
ADE_FEATURES = torch.load('dataset/ade_features.pt')['features']
|
19 |
+
DETECTION_FEATURES = torch.load('dataset/detection_features.pt')['features']
|
20 |
+
BACKGROUND_FEATURES = torch.load('dataset/background_features.pt')
|
21 |
+
|
22 |
+
|
23 |
+
class Transform:
|
24 |
+
def __init__(self, resize_resolution=384, scale_size=[0.5, 1.0], train=False):
|
25 |
+
self.resize_size = [resize_resolution, resize_resolution]
|
26 |
+
self.scale_size = scale_size
|
27 |
+
self.train = train
|
28 |
+
self.randaugment = RandAugment(2, 5)
|
29 |
+
|
30 |
+
def __call__(self, image, labels):
|
31 |
+
if self.train:
|
32 |
+
# random resize crop
|
33 |
+
i, j, h, w = transforms.RandomResizedCrop.get_params(img=image, scale=self.scale_size, ratio=[3. / 4, 4. / 3])
|
34 |
+
image = transforms_f.crop(image, i, j, h, w)
|
35 |
+
if labels is not None:
|
36 |
+
for exp in labels:
|
37 |
+
labels[exp] = transforms_f.crop(labels[exp], i, j, h, w)
|
38 |
+
|
39 |
+
# resize to the defined shape
|
40 |
+
image = transforms_f.resize(image, self.resize_size, transforms_f.InterpolationMode.BICUBIC)
|
41 |
+
if labels is not None:
|
42 |
+
for exp in labels:
|
43 |
+
labels[exp] = transforms_f.resize(labels[exp], [224, 224], transforms_f.InterpolationMode.NEAREST)
|
44 |
+
|
45 |
+
if self.train:
|
46 |
+
# random flipping
|
47 |
+
if torch.rand(1) > 0.5:
|
48 |
+
image = transforms_f.hflip(image)
|
49 |
+
if labels is not None:
|
50 |
+
for exp in labels:
|
51 |
+
labels[exp] = transforms_f.hflip(labels[exp])
|
52 |
+
|
53 |
+
# random augmentation
|
54 |
+
image, labels = self.randaugment(image, labels)
|
55 |
+
|
56 |
+
# transform to tensor
|
57 |
+
image = transforms_f.to_tensor(image)
|
58 |
+
if labels is not None:
|
59 |
+
for exp in labels:
|
60 |
+
if exp in ['depth', 'normal', 'edge']:
|
61 |
+
labels[exp] = transforms_f.to_tensor(labels[exp])
|
62 |
+
else:
|
63 |
+
labels[exp] = (transforms_f.to_tensor(labels[exp]) * 255).long()
|
64 |
+
|
65 |
+
# apply normalisation:
|
66 |
+
image = transforms_f.normalize(image, mean=[0.48145466, 0.4578275, 0.40821073],
|
67 |
+
std=[0.26862954, 0.26130258, 0.27577711])
|
68 |
+
if labels is not None:
|
69 |
+
return {'rgb': image, **labels}
|
70 |
+
else:
|
71 |
+
return{'rgb': image}
|
72 |
+
|
73 |
+
|
74 |
+
def get_expert_labels(data_path, label_path, image_path, dataset, experts):
|
75 |
+
image_full_path = os.path.join(data_path, dataset, image_path)
|
76 |
+
image = Image.open(image_full_path).convert('RGB')
|
77 |
+
if experts != 'none':
|
78 |
+
labels = {}
|
79 |
+
labels_info = {}
|
80 |
+
ps = image_path.split('.')[-1]
|
81 |
+
for exp in experts:
|
82 |
+
if exp in ['seg_coco', 'seg_ade', 'edge', 'depth']:
|
83 |
+
label_full_path = os.path.join(label_path, exp, dataset, image_path.replace(f'.{ps}', '.png'))
|
84 |
+
if os.stat(label_full_path).st_size > 0:
|
85 |
+
labels[exp] = Image.open(label_full_path).convert('L')
|
86 |
+
else:
|
87 |
+
labels[exp] = Image.fromarray(np.zeros([image.size[1], image.size[0]])).convert('L')
|
88 |
+
elif exp == 'normal':
|
89 |
+
label_full_path = os.path.join(label_path, exp, dataset, image_path.replace(f'.{ps}', '.png'))
|
90 |
+
if os.stat(label_full_path).st_size > 0:
|
91 |
+
labels[exp] = Image.open(label_full_path).convert('RGB')
|
92 |
+
else:
|
93 |
+
labels[exp] = Image.fromarray(np.zeros([image.size[1], image.size[0], 3])).convert('RGB')
|
94 |
+
elif exp == 'obj_detection':
|
95 |
+
label_full_path = os.path.join(label_path, exp, dataset, image_path.replace(f'.{ps}', '.png'))
|
96 |
+
if os.stat(label_full_path).st_size > 0:
|
97 |
+
labels[exp] = Image.open(label_full_path).convert('L')
|
98 |
+
else:
|
99 |
+
labels[exp] = Image.fromarray(255 * np.ones([image.size[1], image.size[0]])).convert('L')
|
100 |
+
label_info_path = os.path.join(label_path, exp, dataset, image_path.replace(f'.{ps}', '.json'))
|
101 |
+
labels_info[exp] = json.load(open(label_info_path, 'r'))
|
102 |
+
elif exp == 'ocr_detection':
|
103 |
+
label_full_path = os.path.join(label_path, exp, dataset, image_path.replace(f'.{ps}', '.png'))
|
104 |
+
label_info_path = os.path.join(label_path, exp, dataset, image_path.replace(f'.{ps}', '.pt'))
|
105 |
+
if os.path.exists(label_info_path):
|
106 |
+
labels[exp] = Image.open(label_full_path).convert('L')
|
107 |
+
labels_info[exp] = torch.load(label_info_path)
|
108 |
+
else:
|
109 |
+
labels[exp] = Image.fromarray(255 * np.ones([image.size[1], image.size[0]])).convert('L')
|
110 |
+
labels_info[exp] = None
|
111 |
+
|
112 |
+
else:
|
113 |
+
labels, labels_info = None, None
|
114 |
+
return image, labels, labels_info
|
115 |
+
|
116 |
+
|
117 |
+
def post_label_process(inputs, labels_info):
|
118 |
+
eps = 1e-6
|
119 |
+
for exp in inputs:
|
120 |
+
if exp in ['depth', 'normal', 'edge']: # remap to -1 to 1 range
|
121 |
+
inputs[exp] = 2 * (inputs[exp] - inputs[exp].min()) / (inputs[exp].max() - inputs[exp].min() + eps) - 1
|
122 |
+
|
123 |
+
elif exp == 'seg_coco': # in-paint with CLIP features
|
124 |
+
text_emb = torch.empty([64, *inputs[exp].shape[1:]])
|
125 |
+
for l in inputs[exp].unique():
|
126 |
+
if l == 255:
|
127 |
+
text_emb[:, (inputs[exp][0] == l)] = BACKGROUND_FEATURES.unsqueeze(-1)
|
128 |
+
else:
|
129 |
+
text_emb[:, (inputs[exp][0] == l)] = COCO_FEATURES[l].unsqueeze(-1)
|
130 |
+
inputs[exp] = text_emb
|
131 |
+
|
132 |
+
elif exp == 'seg_ade': # in-paint with CLIP features
|
133 |
+
text_emb = torch.empty([64, *inputs[exp].shape[1:]])
|
134 |
+
for l in inputs[exp].unique():
|
135 |
+
if l == 255:
|
136 |
+
text_emb[:, (inputs[exp][0] == l)] = BACKGROUND_FEATURES.unsqueeze(-1)
|
137 |
+
else:
|
138 |
+
text_emb[:, (inputs[exp][0] == l)] = ADE_FEATURES[l].unsqueeze(-1)
|
139 |
+
inputs[exp] = text_emb
|
140 |
+
|
141 |
+
elif exp == 'obj_detection': # in-paint with CLIP features
|
142 |
+
text_emb = torch.empty([64, *inputs[exp].shape[1:]])
|
143 |
+
label_map = labels_info[exp]
|
144 |
+
for l in inputs[exp].unique():
|
145 |
+
if l == 255:
|
146 |
+
text_emb[:, (inputs[exp][0] == l)] = BACKGROUND_FEATURES.unsqueeze(-1)
|
147 |
+
else:
|
148 |
+
text_emb[:, (inputs[exp][0] == l)] = DETECTION_FEATURES[label_map[str(l.item())]].unsqueeze(-1)
|
149 |
+
inputs[exp] = {'label': text_emb, 'instance': inputs[exp]}
|
150 |
+
|
151 |
+
elif exp == 'ocr_detection': # in-paint with CLIP features
|
152 |
+
text_emb = torch.empty([64, *inputs[exp].shape[1:]])
|
153 |
+
label_map = labels_info[exp]
|
154 |
+
for l in inputs[exp].unique():
|
155 |
+
if l == 255:
|
156 |
+
text_emb[:, (inputs[exp][0] == l)] = BACKGROUND_FEATURES.unsqueeze(-1)
|
157 |
+
else:
|
158 |
+
text_emb[:, (inputs[exp][0] == l)] = label_map[l.item()]['features'].unsqueeze(-1)
|
159 |
+
inputs[exp] = text_emb
|
160 |
+
return inputs
|
161 |
+
|
162 |
+
|
163 |
+
def pre_caption(caption, max_words=50):
|
164 |
+
caption = re.sub(r"([.!\"()*#:;~])", ' ', caption.capitalize()) # remove special characters
|
165 |
+
caption = re.sub(r"\s{2,}", ' ', caption) # remove two white spaces
|
166 |
+
|
167 |
+
caption = caption.rstrip('\n') # remove \num_ans_per_q symbol
|
168 |
+
caption = caption.strip(' ') # remove leading and trailing white spaces
|
169 |
+
|
170 |
+
# truncate caption to the max words
|
171 |
+
caption_words = caption.split(' ')
|
172 |
+
if len(caption_words) > max_words:
|
173 |
+
caption = ' '.join(caption_words[:max_words])
|
174 |
+
return caption
|
175 |
+
|
176 |
+
|
177 |
+
def pre_question(question, max_words=50):
|
178 |
+
question = re.sub(r"([.!\"()*#:;~])", ' ', question.capitalize()) # remove special characters
|
179 |
+
question = question.strip()
|
180 |
+
|
181 |
+
# truncate question
|
182 |
+
question_words = question.split(' ')
|
183 |
+
if len(question_words) > max_words:
|
184 |
+
question = ' '.join(question_words[:max_words])
|
185 |
+
if question[-1] != '?':
|
186 |
+
question += '?'
|
187 |
+
return question
|
188 |
+
|
prismer/dataset/vqa_dataset.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
from dataset.utils import *
|
9 |
+
|
10 |
+
|
11 |
+
class VQA(Dataset):
|
12 |
+
def __init__(self, config, train=True):
|
13 |
+
self.data_path = config['data_path']
|
14 |
+
self.label_path = config['label_path']
|
15 |
+
self.experts = config['experts']
|
16 |
+
self.transform = Transform(resize_resolution=config['image_resolution'], scale_size=[0.5, 1.0], train=train)
|
17 |
+
self.train = train
|
18 |
+
|
19 |
+
if train:
|
20 |
+
self.data_list = []
|
21 |
+
if 'vqav2' in config['datasets']:
|
22 |
+
self.data_list += json.load(open(os.path.join(self.data_path, 'vqav2_train_val.json'), 'r'))
|
23 |
+
if 'vg' in config['datasets']:
|
24 |
+
self.data_list += json.load(open(os.path.join(self.data_path, 'vg_qa.json'), 'r'))
|
25 |
+
else:
|
26 |
+
self.data_list = json.load(open(os.path.join(self.data_path, 'vqav2_test.json'), 'r'))
|
27 |
+
self.answer_list = json.load(open(os.path.join(self.data_path, 'answer_list.json'), 'r'))
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return len(self.data_list)
|
31 |
+
|
32 |
+
def __getitem__(self, index):
|
33 |
+
data = self.data_list[index]
|
34 |
+
|
35 |
+
if data['dataset'] == 'vqa':
|
36 |
+
image, labels, labels_info = get_expert_labels(self.data_path, self.label_path, data['image'], 'vqav2', self.experts)
|
37 |
+
elif data['dataset'] == 'vg':
|
38 |
+
image, labels, labels_info = get_expert_labels(self.data_path, self.label_path, data['image'], 'vg', self.experts)
|
39 |
+
|
40 |
+
experts = self.transform(image, labels)
|
41 |
+
experts = post_label_process(experts, labels_info)
|
42 |
+
|
43 |
+
if self.train:
|
44 |
+
question = pre_question(data['question'], max_words=30)
|
45 |
+
answers = data['answer']
|
46 |
+
weights = torch.tensor(data['weight']) if data['dataset'] != 'vg' else torch.tensor(0.2)
|
47 |
+
return experts, question, answers, weights
|
48 |
+
else:
|
49 |
+
question = pre_question(data['question'], max_words=30)
|
50 |
+
question_id = data['question_id']
|
51 |
+
return experts, index, question, question_id
|
prismer/demo.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import torch
|
4 |
+
try:
|
5 |
+
import ruamel_yaml as yaml
|
6 |
+
except ModuleNotFoundError:
|
7 |
+
import ruamel.yaml as yaml
|
8 |
+
|
9 |
+
|
10 |
+
from model.prismer_caption import PrismerCaption
|
11 |
+
from dataset import create_dataset, create_loader
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
parser = argparse.ArgumentParser()
|
15 |
+
parser.add_argument('--mode', default='')
|
16 |
+
parser.add_argument('--port', default='')
|
17 |
+
|
18 |
+
parser.add_argument('--exp_name', default='', type=str)
|
19 |
+
args = parser.parse_args()
|
20 |
+
|
21 |
+
# load config
|
22 |
+
config = yaml.load(open('configs/caption.yaml', 'r'), Loader=yaml.Loader)['demo']
|
23 |
+
|
24 |
+
# generate expert labels
|
25 |
+
if len(config['experts']) > 0:
|
26 |
+
script_name = f'python experts/generate_depth.py'
|
27 |
+
os.system(script_name)
|
28 |
+
print('***** Generated Depth *****')
|
29 |
+
|
30 |
+
script_name = f'python experts/generate_edge.py'
|
31 |
+
os.system(script_name)
|
32 |
+
print('***** Generated Edge *****')
|
33 |
+
|
34 |
+
script_name = f'python experts/generate_normal.py'
|
35 |
+
os.system(script_name)
|
36 |
+
print('***** Generated Surface Normals *****')
|
37 |
+
|
38 |
+
script_name = f'python experts/generate_objdet.py'
|
39 |
+
os.system(script_name)
|
40 |
+
print('***** Generated Object Detection Labels *****')
|
41 |
+
|
42 |
+
script_name = f'python experts/generate_ocrdet.py'
|
43 |
+
os.system(script_name)
|
44 |
+
print('***** Generated OCR Detection Labels *****')
|
45 |
+
|
46 |
+
script_name = f'python experts/generate_segmentation.py'
|
47 |
+
os.system(script_name)
|
48 |
+
print('***** Generated Segmentation Labels *****')
|
49 |
+
|
50 |
+
# load datasets
|
51 |
+
_, test_dataset = create_dataset('caption', config)
|
52 |
+
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False)
|
53 |
+
|
54 |
+
# load pre-trained model
|
55 |
+
model = PrismerCaption(config)
|
56 |
+
state_dict = torch.load(f'logging/caption_{args.exp_name}/pytorch_model.bin', map_location='cuda:0')
|
57 |
+
model.load_state_dict(state_dict)
|
58 |
+
tokenizer = model.tokenizer
|
59 |
+
|
60 |
+
# inference
|
61 |
+
model.eval()
|
62 |
+
with torch.no_grad():
|
63 |
+
for step, (experts, data_ids) in enumerate(tqdm(test_loader)):
|
64 |
+
captions = model(experts, train=False, prefix=config['prefix'])
|
65 |
+
|
66 |
+
captions = tokenizer(captions, max_length=30, padding='max_length', return_tensors='pt').input_ids
|
67 |
+
caption = captions.to(experts['rgb'].device)[0]
|
68 |
+
|
69 |
+
caption = tokenizer.decode(caption, skip_special_tokens=True)
|
70 |
+
caption = caption.capitalize() + '.'
|
71 |
+
|
72 |
+
# save caption
|
73 |
+
save_path = test_loader.dataset.data_list[data_ids[0]]['image'].replace('jpg', 'txt')
|
74 |
+
with open(save_path, 'w') as f:
|
75 |
+
f.write(caption)
|
76 |
+
|
77 |
+
print('All Done.')
|
prismer/demo_vis.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from utils import create_ade20k_label_colormap
|
10 |
+
|
11 |
+
obj_label_map = torch.load('dataset/detection_features.pt')['labels']
|
12 |
+
coco_label_map = torch.load('dataset/coco_features.pt')['labels']
|
13 |
+
ade_color = create_ade20k_label_colormap()
|
14 |
+
|
15 |
+
file_path = 'helpers/images'
|
16 |
+
expert_path = 'helpers/labels'
|
17 |
+
plt.ioff()
|
18 |
+
|
19 |
+
|
20 |
+
def get_label_path(file_name, expert_name, with_suffix=False):
|
21 |
+
file_suffix = '.png' if not with_suffix else '_.png'
|
22 |
+
label_name = ''.join(file_name.split('.')[:-1] + [file_suffix])
|
23 |
+
label_path = os.path.join(expert_path, expert_name, label_name)
|
24 |
+
return label_path
|
25 |
+
|
26 |
+
|
27 |
+
def depth_prettify(file_name):
|
28 |
+
label_path = get_label_path(file_name, 'depth')
|
29 |
+
save_path = get_label_path(file_name, 'depth', True)
|
30 |
+
depth = plt.imread(label_path)
|
31 |
+
plt.imsave(save_path, depth, cmap='rainbow')
|
32 |
+
|
33 |
+
|
34 |
+
def obj_detection_prettify(file_name):
|
35 |
+
label_path = get_label_path(file_name, 'obj_detection')
|
36 |
+
save_path = get_label_path(file_name, 'obj_detection', True)
|
37 |
+
|
38 |
+
rgb = plt.imread(file_name)
|
39 |
+
obj_labels = plt.imread(label_path)
|
40 |
+
obj_labels_dict = json.load(open(label_path.replace('.png', '.json')))
|
41 |
+
|
42 |
+
plt.imshow(rgb)
|
43 |
+
|
44 |
+
num_objs = np.unique(obj_labels)[:-1].max()
|
45 |
+
plt.imshow(obj_labels, cmap='terrain', vmax=num_objs + 1 / 255., alpha=0.5)
|
46 |
+
|
47 |
+
for i in np.unique(obj_labels)[:-1]:
|
48 |
+
obj_idx_all = np.where(obj_labels == i)
|
49 |
+
obj_idx = random.randint(0, len(obj_idx_all[0]))
|
50 |
+
x, y = obj_idx_all[1][obj_idx], obj_idx_all[0][obj_idx]
|
51 |
+
obj_name = obj_label_map[obj_labels_dict[str(int(i * 255))]]
|
52 |
+
plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center')
|
53 |
+
|
54 |
+
plt.axis('off')
|
55 |
+
plt.savefig(save_path, bbox_inches='tight', transparent=True, pad_inches=0)
|
56 |
+
plt.close()
|
57 |
+
|
58 |
+
|
59 |
+
def seg_prettify(file_name):
|
60 |
+
label_path = get_label_path(file_name, 'seg_coco')
|
61 |
+
save_path = get_label_path(file_name, 'seg_coco', True)
|
62 |
+
|
63 |
+
rgb = plt.imread(file_name)
|
64 |
+
seg_labels = plt.imread(label_path)
|
65 |
+
|
66 |
+
plt.imshow(rgb)
|
67 |
+
|
68 |
+
seg_map = np.zeros(list(seg_labels.shape) + [3], dtype=np.int16)
|
69 |
+
for i in np.unique(seg_labels):
|
70 |
+
seg_map[seg_labels == i] = ade_color[int(i * 255)]
|
71 |
+
|
72 |
+
plt.imshow(seg_map, alpha=0.5)
|
73 |
+
|
74 |
+
for i in np.unique(seg_labels):
|
75 |
+
obj_idx_all = np.where(seg_labels == i)
|
76 |
+
obj_idx = random.randint(0, len(obj_idx_all[0]))
|
77 |
+
x, y = obj_idx_all[1][obj_idx], obj_idx_all[0][obj_idx]
|
78 |
+
obj_name = coco_label_map[int(i * 255)]
|
79 |
+
plt.text(x, y, obj_name, c='white', horizontalalignment='center', verticalalignment='center')
|
80 |
+
|
81 |
+
plt.axis('off')
|
82 |
+
plt.savefig(save_path, bbox_inches='tight', transparent=True, pad_inches=0)
|
83 |
+
plt.close()
|
84 |
+
|
85 |
+
|
86 |
+
def ocr_detection_prettify(file_name):
|
87 |
+
label_path = get_label_path(file_name, 'ocr_detection')
|
88 |
+
save_path = get_label_path(file_name, 'ocr_detection', True)
|
89 |
+
|
90 |
+
if os.path.exists(label_path):
|
91 |
+
rgb = plt.imread(file_name)
|
92 |
+
ocr_labels = plt.imread(label_path)
|
93 |
+
ocr_labels_dict = torch.load(label_path.replace('.png', '.pt'))
|
94 |
+
|
95 |
+
plt.imshow(rgb)
|
96 |
+
plt.imshow((1 - ocr_labels) < 1, cmap='gray', alpha=0.8)
|
97 |
+
|
98 |
+
for i in np.unique(ocr_labels)[:-1]:
|
99 |
+
text_idx_all = np.where(ocr_labels == i)
|
100 |
+
x, y = text_idx_all[1].mean(), text_idx_all[0].mean()
|
101 |
+
text = ocr_labels_dict[int(i * 255)]['text']
|
102 |
+
plt.text(x, y, text, c='white', horizontalalignment='center', verticalalignment='center')
|
103 |
+
|
104 |
+
plt.axis('off')
|
105 |
+
plt.savefig(save_path, bbox_inches='tight', transparent=True, pad_inches=0)
|
106 |
+
plt.close()
|
107 |
+
else:
|
108 |
+
rgb = plt.imread(file_name)
|
109 |
+
ocr_labels = np.ones_like(rgb, dtype=np.float32())
|
110 |
+
|
111 |
+
plt.imshow(rgb)
|
112 |
+
plt.imshow(ocr_labels, cmap='gray', alpha=0.8)
|
113 |
+
|
114 |
+
x, y = rgb.shape[1] / 2, rgb.shape[0] / 2
|
115 |
+
plt.text(x, y, 'No text detected', c='black', horizontalalignment='center', verticalalignment='center')
|
116 |
+
|
117 |
+
plt.axis('off')
|
118 |
+
plt.savefig(save_path, bbox_inches='tight', transparent=True, pad_inches=0)
|
119 |
+
plt.close()
|
120 |
+
|
121 |
+
|
122 |
+
im_list = glob.glob(file_path + '/*.jpg') + glob.glob(file_path + '/*.png') + glob.glob(file_path + '/*.jpeg')
|
123 |
+
|
124 |
+
# prettify labels first:
|
125 |
+
for i in range(len(im_list)):
|
126 |
+
depth_prettify(im_list[i])
|
127 |
+
seg_prettify(im_list[i])
|
128 |
+
ocr_detection_prettify(im_list[i])
|
129 |
+
obj_detection_prettify(im_list[i])
|
130 |
+
|
131 |
+
pretty = {'depth': True, 'normal': False, 'edge': False,
|
132 |
+
'obj_detection': True, 'ocr_detection': True, 'seg_coco': True}
|
133 |
+
|
134 |
+
# plot expert labels
|
135 |
+
for im_path in im_list:
|
136 |
+
fig, axs = plt.subplots(1, 7, figsize=(20, 4))
|
137 |
+
rgb = plt.imread(im_path)
|
138 |
+
axs[0].imshow(rgb)
|
139 |
+
axs[0].axis('off')
|
140 |
+
axs[0].set_title('RGB')
|
141 |
+
|
142 |
+
for j in range(6):
|
143 |
+
label_name = list(pretty.keys())[j]
|
144 |
+
label_path = get_label_path(im_path, label_name, with_suffix=pretty[label_name])
|
145 |
+
label = plt.imread(label_path)
|
146 |
+
if label_name != 'edge':
|
147 |
+
axs[j + 1].imshow(label)
|
148 |
+
else:
|
149 |
+
axs[j + 1].imshow(label, cmap='gray')
|
150 |
+
|
151 |
+
axs[j + 1].axis('off')
|
152 |
+
axs[j + 1].set_title(label_name)
|
153 |
+
|
154 |
+
caption_path = ''.join(im_path.split('.')[:-1] + ['.txt'])
|
155 |
+
with open(caption_path) as f:
|
156 |
+
caption = f.readlines()[0]
|
157 |
+
|
158 |
+
plt.suptitle(caption)
|
159 |
+
plt.tight_layout()
|
160 |
+
|
161 |
+
plt.show()
|
prismer/download_checkpoints.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_download, hf_hub_url, get_hf_file_metadata
|
2 |
+
from huggingface_hub.utils import disable_progress_bars
|
3 |
+
from pathlib import Path
|
4 |
+
from rich.progress import Progress
|
5 |
+
from fire import Fire
|
6 |
+
from typing import Union, List
|
7 |
+
|
8 |
+
_EXPERTS = [
|
9 |
+
"10_model.pth",
|
10 |
+
"Unified_learned_OCIM_RS200_6x+2x.pth",
|
11 |
+
"dpt_hybrid-midas-501f0c75.pt",
|
12 |
+
"icdar2015_hourglass88.pth",
|
13 |
+
"model_final_e0c58e.pkl",
|
14 |
+
"model_final_f07440.pkl",
|
15 |
+
"scannet.pt",
|
16 |
+
]
|
17 |
+
|
18 |
+
_MODELS = [
|
19 |
+
"vqa_prismer_base",
|
20 |
+
"vqa_prismer_large",
|
21 |
+
"vqa_prismerz_base",
|
22 |
+
"vqa_prismerz_large",
|
23 |
+
"caption_prismerz_base",
|
24 |
+
"caption_prismerz_large",
|
25 |
+
"caption_prismer_base",
|
26 |
+
"caption_prismer_large",
|
27 |
+
"pretrain_prismer_base",
|
28 |
+
"pretrain_prismer_large",
|
29 |
+
"pretrain_prismerz_base",
|
30 |
+
"pretrain_prismerz_large",
|
31 |
+
]
|
32 |
+
|
33 |
+
_REPO_ID = "lorenmt/prismer"
|
34 |
+
|
35 |
+
|
36 |
+
def download_checkpoints(
|
37 |
+
download_experts: bool = False,
|
38 |
+
download_models: Union[bool, List] = False,
|
39 |
+
hide_tqdm: bool = False,
|
40 |
+
force_redownload: bool = False,
|
41 |
+
):
|
42 |
+
if hide_tqdm:
|
43 |
+
disable_progress_bars()
|
44 |
+
# Convert to list and check for invalid names
|
45 |
+
download_experts = _EXPERTS if download_experts else []
|
46 |
+
if download_models:
|
47 |
+
# only download single model
|
48 |
+
if isinstance(download_models, str):
|
49 |
+
download_models = [download_models]
|
50 |
+
|
51 |
+
assert all([m in _MODELS for m in download_models]), f"Invalid model name. Must be one of {_MODELS}"
|
52 |
+
download_models = _MODELS if isinstance(download_models, bool) else download_models
|
53 |
+
else:
|
54 |
+
download_models = []
|
55 |
+
|
56 |
+
# Check if files already exist
|
57 |
+
if not force_redownload:
|
58 |
+
download_experts = [e for e in download_experts if not Path(f"./experts/expert_weights/{e}").exists()]
|
59 |
+
download_models = [m for m in download_models if not Path(f"{m}/pytorch_model.bin").exists()]
|
60 |
+
|
61 |
+
assert download_experts or download_models, "Nothing to download."
|
62 |
+
|
63 |
+
with Progress() as progress:
|
64 |
+
# Calculate total download size
|
65 |
+
progress.print("[blue]Calculating download size...")
|
66 |
+
total_size = 0
|
67 |
+
for expert in download_experts:
|
68 |
+
url = hf_hub_url(
|
69 |
+
filename=expert,
|
70 |
+
repo_id=_REPO_ID,
|
71 |
+
subfolder="expert_weights"
|
72 |
+
)
|
73 |
+
total_size += get_hf_file_metadata(url).size
|
74 |
+
|
75 |
+
for model in download_models:
|
76 |
+
url = hf_hub_url(
|
77 |
+
filename=f"pytorch_model.bin",
|
78 |
+
repo_id=_REPO_ID,
|
79 |
+
subfolder=model
|
80 |
+
)
|
81 |
+
total_size += get_hf_file_metadata(url).size
|
82 |
+
progress.print(f"[blue]Total download size: {total_size / 1e9:.2f} GB")
|
83 |
+
|
84 |
+
# Download files
|
85 |
+
total_files = len(download_experts) + len(download_models)
|
86 |
+
total_task = progress.add_task(f"[green]Downloading files", total=total_files)
|
87 |
+
if download_experts:
|
88 |
+
expert_task = progress.add_task(
|
89 |
+
f"[green]Downloading experts...", total=len(download_experts)
|
90 |
+
)
|
91 |
+
out_folder = Path("experts/expert_weights")
|
92 |
+
out_folder.mkdir(parents=True, exist_ok=True)
|
93 |
+
for expert in download_experts:
|
94 |
+
path = Path(hf_hub_download(
|
95 |
+
filename=expert,
|
96 |
+
repo_id=_REPO_ID,
|
97 |
+
subfolder="expert_weights"
|
98 |
+
))
|
99 |
+
path.resolve().rename(out_folder/path.name)
|
100 |
+
path.unlink()
|
101 |
+
progress.advance(expert_task)
|
102 |
+
progress.advance(total_task)
|
103 |
+
|
104 |
+
if download_models:
|
105 |
+
model_task = progress.add_task(
|
106 |
+
f"[green]Downloading models...", total=len(download_models)
|
107 |
+
)
|
108 |
+
for model in download_models:
|
109 |
+
path = Path(hf_hub_download(
|
110 |
+
filename=f"pytorch_model.bin",
|
111 |
+
repo_id=_REPO_ID,
|
112 |
+
subfolder=model
|
113 |
+
))
|
114 |
+
out_folder = Path("./logging")/model
|
115 |
+
out_folder.mkdir(parents=True, exist_ok=True)
|
116 |
+
path.resolve().rename(out_folder/"pytorch_model.bin")
|
117 |
+
path.unlink()
|
118 |
+
progress.advance(model_task)
|
119 |
+
progress.advance(total_task)
|
120 |
+
progress.print("[green]Done!")
|
121 |
+
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
Fire(download_checkpoints)
|
prismer/experts/depth/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device("cpu"))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
prismer/experts/depth/blocks.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .vit import (
|
5 |
+
_make_pretrained_vitb_rn50_384,
|
6 |
+
_make_pretrained_vitl16_384,
|
7 |
+
_make_pretrained_vitb16_384,
|
8 |
+
forward_vit,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
def _make_encoder(
|
13 |
+
backbone,
|
14 |
+
features,
|
15 |
+
use_pretrained,
|
16 |
+
groups=1,
|
17 |
+
expand=False,
|
18 |
+
exportable=True,
|
19 |
+
hooks=None,
|
20 |
+
use_vit_only=False,
|
21 |
+
use_readout="ignore",
|
22 |
+
enable_attention_hooks=False,
|
23 |
+
):
|
24 |
+
if backbone == "vitl16_384":
|
25 |
+
pretrained = _make_pretrained_vitl16_384(
|
26 |
+
use_pretrained,
|
27 |
+
hooks=hooks,
|
28 |
+
use_readout=use_readout,
|
29 |
+
enable_attention_hooks=enable_attention_hooks,
|
30 |
+
)
|
31 |
+
scratch = _make_scratch(
|
32 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
33 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
34 |
+
elif backbone == "vitb_rn50_384":
|
35 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
36 |
+
use_pretrained,
|
37 |
+
hooks=hooks,
|
38 |
+
use_vit_only=use_vit_only,
|
39 |
+
use_readout=use_readout,
|
40 |
+
enable_attention_hooks=enable_attention_hooks,
|
41 |
+
)
|
42 |
+
scratch = _make_scratch(
|
43 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
44 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
45 |
+
elif backbone == "vitb16_384":
|
46 |
+
pretrained = _make_pretrained_vitb16_384(
|
47 |
+
use_pretrained,
|
48 |
+
hooks=hooks,
|
49 |
+
use_readout=use_readout,
|
50 |
+
enable_attention_hooks=enable_attention_hooks,
|
51 |
+
)
|
52 |
+
scratch = _make_scratch(
|
53 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
54 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
55 |
+
elif backbone == "resnext101_wsl":
|
56 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
57 |
+
scratch = _make_scratch(
|
58 |
+
[256, 512, 1024, 2048], features, groups=groups, expand=expand
|
59 |
+
) # efficientnet_lite3
|
60 |
+
else:
|
61 |
+
print(f"Backbone '{backbone}' not implemented")
|
62 |
+
assert False
|
63 |
+
|
64 |
+
return pretrained, scratch
|
65 |
+
|
66 |
+
|
67 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
68 |
+
scratch = nn.Module()
|
69 |
+
|
70 |
+
out_shape1 = out_shape
|
71 |
+
out_shape2 = out_shape
|
72 |
+
out_shape3 = out_shape
|
73 |
+
out_shape4 = out_shape
|
74 |
+
if expand == True:
|
75 |
+
out_shape1 = out_shape
|
76 |
+
out_shape2 = out_shape * 2
|
77 |
+
out_shape3 = out_shape * 4
|
78 |
+
out_shape4 = out_shape * 8
|
79 |
+
|
80 |
+
scratch.layer1_rn = nn.Conv2d(
|
81 |
+
in_shape[0],
|
82 |
+
out_shape1,
|
83 |
+
kernel_size=3,
|
84 |
+
stride=1,
|
85 |
+
padding=1,
|
86 |
+
bias=False,
|
87 |
+
groups=groups,
|
88 |
+
)
|
89 |
+
scratch.layer2_rn = nn.Conv2d(
|
90 |
+
in_shape[1],
|
91 |
+
out_shape2,
|
92 |
+
kernel_size=3,
|
93 |
+
stride=1,
|
94 |
+
padding=1,
|
95 |
+
bias=False,
|
96 |
+
groups=groups,
|
97 |
+
)
|
98 |
+
scratch.layer3_rn = nn.Conv2d(
|
99 |
+
in_shape[2],
|
100 |
+
out_shape3,
|
101 |
+
kernel_size=3,
|
102 |
+
stride=1,
|
103 |
+
padding=1,
|
104 |
+
bias=False,
|
105 |
+
groups=groups,
|
106 |
+
)
|
107 |
+
scratch.layer4_rn = nn.Conv2d(
|
108 |
+
in_shape[3],
|
109 |
+
out_shape4,
|
110 |
+
kernel_size=3,
|
111 |
+
stride=1,
|
112 |
+
padding=1,
|
113 |
+
bias=False,
|
114 |
+
groups=groups,
|
115 |
+
)
|
116 |
+
|
117 |
+
return scratch
|
118 |
+
|
119 |
+
|
120 |
+
def _make_resnet_backbone(resnet):
|
121 |
+
pretrained = nn.Module()
|
122 |
+
pretrained.layer1 = nn.Sequential(
|
123 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
124 |
+
)
|
125 |
+
|
126 |
+
pretrained.layer2 = resnet.layer2
|
127 |
+
pretrained.layer3 = resnet.layer3
|
128 |
+
pretrained.layer4 = resnet.layer4
|
129 |
+
|
130 |
+
return pretrained
|
131 |
+
|
132 |
+
|
133 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
134 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
135 |
+
return _make_resnet_backbone(resnet)
|
136 |
+
|
137 |
+
|
138 |
+
class Interpolate(nn.Module):
|
139 |
+
"""Interpolation module."""
|
140 |
+
|
141 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
142 |
+
"""Init.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
scale_factor (float): scaling
|
146 |
+
mode (str): interpolation mode
|
147 |
+
"""
|
148 |
+
super(Interpolate, self).__init__()
|
149 |
+
|
150 |
+
self.interp = nn.functional.interpolate
|
151 |
+
self.scale_factor = scale_factor
|
152 |
+
self.mode = mode
|
153 |
+
self.align_corners = align_corners
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
"""Forward pass.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
x (tensor): input
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
tensor: interpolated data_list
|
163 |
+
"""
|
164 |
+
|
165 |
+
x = self.interp(
|
166 |
+
x,
|
167 |
+
scale_factor=self.scale_factor,
|
168 |
+
mode=self.mode,
|
169 |
+
align_corners=self.align_corners,
|
170 |
+
)
|
171 |
+
|
172 |
+
return x
|
173 |
+
|
174 |
+
|
175 |
+
class ResidualConvUnit(nn.Module):
|
176 |
+
"""Residual convolution module."""
|
177 |
+
|
178 |
+
def __init__(self, features):
|
179 |
+
"""Init.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
features (int): number of features
|
183 |
+
"""
|
184 |
+
super().__init__()
|
185 |
+
|
186 |
+
self.conv1 = nn.Conv2d(
|
187 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
188 |
+
)
|
189 |
+
|
190 |
+
self.conv2 = nn.Conv2d(
|
191 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
192 |
+
)
|
193 |
+
|
194 |
+
self.relu = nn.ReLU(inplace=True)
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
"""Forward pass.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
x (tensor): input
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
tensor: output
|
204 |
+
"""
|
205 |
+
out = self.relu(x)
|
206 |
+
out = self.conv1(out)
|
207 |
+
out = self.relu(out)
|
208 |
+
out = self.conv2(out)
|
209 |
+
|
210 |
+
return out + x
|
211 |
+
|
212 |
+
|
213 |
+
class FeatureFusionBlock(nn.Module):
|
214 |
+
"""Feature fusion block."""
|
215 |
+
|
216 |
+
def __init__(self, features):
|
217 |
+
"""Init.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
features (int): number of features
|
221 |
+
"""
|
222 |
+
super(FeatureFusionBlock, self).__init__()
|
223 |
+
|
224 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
225 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
226 |
+
|
227 |
+
def forward(self, *xs):
|
228 |
+
"""Forward pass.
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
tensor: output
|
232 |
+
"""
|
233 |
+
output = xs[0]
|
234 |
+
|
235 |
+
if len(xs) == 2:
|
236 |
+
output += self.resConfUnit1(xs[1])
|
237 |
+
|
238 |
+
output = self.resConfUnit2(output)
|
239 |
+
|
240 |
+
output = nn.functional.interpolate(
|
241 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
242 |
+
)
|
243 |
+
|
244 |
+
return output
|
245 |
+
|
246 |
+
|
247 |
+
class ResidualConvUnit_custom(nn.Module):
|
248 |
+
"""Residual convolution module."""
|
249 |
+
|
250 |
+
def __init__(self, features, activation, bn):
|
251 |
+
"""Init.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
features (int): number of features
|
255 |
+
"""
|
256 |
+
super().__init__()
|
257 |
+
|
258 |
+
self.bn = bn
|
259 |
+
|
260 |
+
self.groups = 1
|
261 |
+
|
262 |
+
self.conv1 = nn.Conv2d(
|
263 |
+
features,
|
264 |
+
features,
|
265 |
+
kernel_size=3,
|
266 |
+
stride=1,
|
267 |
+
padding=1,
|
268 |
+
bias=not self.bn,
|
269 |
+
groups=self.groups,
|
270 |
+
)
|
271 |
+
|
272 |
+
self.conv2 = nn.Conv2d(
|
273 |
+
features,
|
274 |
+
features,
|
275 |
+
kernel_size=3,
|
276 |
+
stride=1,
|
277 |
+
padding=1,
|
278 |
+
bias=not self.bn,
|
279 |
+
groups=self.groups,
|
280 |
+
)
|
281 |
+
|
282 |
+
if self.bn == True:
|
283 |
+
self.bn1 = nn.BatchNorm2d(features)
|
284 |
+
self.bn2 = nn.BatchNorm2d(features)
|
285 |
+
|
286 |
+
self.activation = activation
|
287 |
+
|
288 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
289 |
+
|
290 |
+
def forward(self, x):
|
291 |
+
"""Forward pass.
|
292 |
+
|
293 |
+
Args:
|
294 |
+
x (tensor): input
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
tensor: output
|
298 |
+
"""
|
299 |
+
|
300 |
+
out = self.activation(x)
|
301 |
+
out = self.conv1(out)
|
302 |
+
if self.bn == True:
|
303 |
+
out = self.bn1(out)
|
304 |
+
|
305 |
+
out = self.activation(out)
|
306 |
+
out = self.conv2(out)
|
307 |
+
if self.bn == True:
|
308 |
+
out = self.bn2(out)
|
309 |
+
|
310 |
+
if self.groups > 1:
|
311 |
+
out = self.conv_merge(out)
|
312 |
+
|
313 |
+
return self.skip_add.add(out, x)
|
314 |
+
|
315 |
+
# return out + x
|
316 |
+
|
317 |
+
|
318 |
+
class FeatureFusionBlock_custom(nn.Module):
|
319 |
+
"""Feature fusion block."""
|
320 |
+
|
321 |
+
def __init__(
|
322 |
+
self,
|
323 |
+
features,
|
324 |
+
activation,
|
325 |
+
deconv=False,
|
326 |
+
bn=False,
|
327 |
+
expand=False,
|
328 |
+
align_corners=True,
|
329 |
+
):
|
330 |
+
"""Init.
|
331 |
+
|
332 |
+
Args:
|
333 |
+
features (int): number of features
|
334 |
+
"""
|
335 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
336 |
+
|
337 |
+
self.deconv = deconv
|
338 |
+
self.align_corners = align_corners
|
339 |
+
|
340 |
+
self.groups = 1
|
341 |
+
|
342 |
+
self.expand = expand
|
343 |
+
out_features = features
|
344 |
+
if self.expand == True:
|
345 |
+
out_features = features // 2
|
346 |
+
|
347 |
+
self.out_conv = nn.Conv2d(
|
348 |
+
features,
|
349 |
+
out_features,
|
350 |
+
kernel_size=1,
|
351 |
+
stride=1,
|
352 |
+
padding=0,
|
353 |
+
bias=True,
|
354 |
+
groups=1,
|
355 |
+
)
|
356 |
+
|
357 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
358 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
359 |
+
|
360 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
361 |
+
|
362 |
+
def forward(self, *xs):
|
363 |
+
"""Forward pass.
|
364 |
+
|
365 |
+
Returns:
|
366 |
+
tensor: output
|
367 |
+
"""
|
368 |
+
output = xs[0]
|
369 |
+
|
370 |
+
if len(xs) == 2:
|
371 |
+
res = self.resConfUnit1(xs[1])
|
372 |
+
output = self.skip_add.add(output, res)
|
373 |
+
# output += res
|
374 |
+
|
375 |
+
output = self.resConfUnit2(output)
|
376 |
+
|
377 |
+
output = nn.functional.interpolate(
|
378 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
379 |
+
)
|
380 |
+
|
381 |
+
output = self.out_conv(output)
|
382 |
+
|
383 |
+
return output
|
prismer/experts/depth/generate_dataset.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import glob
|
8 |
+
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
from PIL import ImageFile
|
11 |
+
from dataset.utils import *
|
12 |
+
|
13 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
14 |
+
|
15 |
+
|
16 |
+
class Dataset(Dataset):
|
17 |
+
def __init__(self, data_path, transform):
|
18 |
+
self.data_path = data_path
|
19 |
+
self.transform = transform
|
20 |
+
data_folders = glob.glob(f'{data_path}/*/')
|
21 |
+
self.data_list = [data for f in data_folders for data in glob.glob(f + '*.JPEG')]
|
22 |
+
self.data_list += [data for f in data_folders for data in glob.glob(f + '*.jpg')]
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.data_list)
|
26 |
+
|
27 |
+
def __getitem__(self, index):
|
28 |
+
image_path = self.data_list[index]
|
29 |
+
image = Image.open(image_path).convert('RGB')
|
30 |
+
img_size = [image.size[0], image.size[1]]
|
31 |
+
image = self.transform(image)
|
32 |
+
return image, image_path, img_size
|
prismer/experts/depth/models.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .base_model import BaseModel
|
6 |
+
from .blocks import (
|
7 |
+
FeatureFusionBlock,
|
8 |
+
FeatureFusionBlock_custom,
|
9 |
+
Interpolate,
|
10 |
+
_make_encoder,
|
11 |
+
forward_vit,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def _make_fusion_block(features, use_bn):
|
16 |
+
return FeatureFusionBlock_custom(
|
17 |
+
features,
|
18 |
+
nn.ReLU(False),
|
19 |
+
deconv=False,
|
20 |
+
bn=use_bn,
|
21 |
+
expand=False,
|
22 |
+
align_corners=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class DPT(BaseModel):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
head,
|
30 |
+
features=256,
|
31 |
+
backbone="vitb_rn50_384",
|
32 |
+
readout="project",
|
33 |
+
channels_last=False,
|
34 |
+
use_bn=False,
|
35 |
+
enable_attention_hooks=False,
|
36 |
+
):
|
37 |
+
|
38 |
+
super(DPT, self).__init__()
|
39 |
+
|
40 |
+
self.channels_last = channels_last
|
41 |
+
|
42 |
+
hooks = {
|
43 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
44 |
+
"vitb16_384": [2, 5, 8, 11],
|
45 |
+
"vitl16_384": [5, 11, 17, 23],
|
46 |
+
}
|
47 |
+
|
48 |
+
# Instantiate backbone and reassemble blocks
|
49 |
+
self.pretrained, self.scratch = _make_encoder(
|
50 |
+
backbone,
|
51 |
+
features,
|
52 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
53 |
+
groups=1,
|
54 |
+
expand=False,
|
55 |
+
exportable=False,
|
56 |
+
hooks=hooks[backbone],
|
57 |
+
use_readout=readout,
|
58 |
+
enable_attention_hooks=enable_attention_hooks,
|
59 |
+
)
|
60 |
+
|
61 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
62 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
63 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
64 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
65 |
+
|
66 |
+
self.scratch.output_conv = head
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
if self.channels_last == True:
|
70 |
+
x.contiguous(memory_format=torch.channels_last)
|
71 |
+
|
72 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
73 |
+
|
74 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
75 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
76 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
77 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
78 |
+
|
79 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
80 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
81 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
82 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
83 |
+
|
84 |
+
out = self.scratch.output_conv(path_1)
|
85 |
+
|
86 |
+
return out
|
87 |
+
|
88 |
+
|
89 |
+
class DPTDepthModel(DPT):
|
90 |
+
def __init__(
|
91 |
+
self, path=None, non_negative=True, scale=1.0, shift=0.0, invert=False, **kwargs
|
92 |
+
):
|
93 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
94 |
+
|
95 |
+
self.scale = scale
|
96 |
+
self.shift = shift
|
97 |
+
self.invert = invert
|
98 |
+
|
99 |
+
head = nn.Sequential(
|
100 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
101 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
102 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
103 |
+
nn.ReLU(True),
|
104 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
105 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
106 |
+
nn.Identity(),
|
107 |
+
)
|
108 |
+
|
109 |
+
super().__init__(head, **kwargs)
|
110 |
+
|
111 |
+
if path is not None:
|
112 |
+
self.load(path)
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
inv_depth = super().forward(x).squeeze(dim=1)
|
116 |
+
|
117 |
+
if self.invert:
|
118 |
+
depth = self.scale * inv_depth + self.shift
|
119 |
+
depth[depth < 1e-8] = 1e-8
|
120 |
+
depth = 1.0 / depth
|
121 |
+
return depth
|
122 |
+
else:
|
123 |
+
return inv_depth
|
124 |
+
|
prismer/experts/depth/vit.py
ADDED
@@ -0,0 +1,576 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
activations = {}
|
10 |
+
|
11 |
+
|
12 |
+
def get_activation(name):
|
13 |
+
def hook(model, input, output):
|
14 |
+
activations[name] = output
|
15 |
+
|
16 |
+
return hook
|
17 |
+
|
18 |
+
|
19 |
+
attention = {}
|
20 |
+
|
21 |
+
|
22 |
+
def get_attention(name):
|
23 |
+
def hook(module, input, output):
|
24 |
+
x = input[0]
|
25 |
+
B, N, C = x.shape
|
26 |
+
qkv = (
|
27 |
+
module.qkv(x)
|
28 |
+
.reshape(B, N, 3, module.num_heads, C // module.num_heads)
|
29 |
+
.permute(2, 0, 3, 1, 4)
|
30 |
+
)
|
31 |
+
q, k, v = (
|
32 |
+
qkv[0],
|
33 |
+
qkv[1],
|
34 |
+
qkv[2],
|
35 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
36 |
+
|
37 |
+
attn = (q @ k.transpose(-2, -1)) * module.scale
|
38 |
+
|
39 |
+
attn = attn.softmax(dim=-1) # [:,:,1,1:]
|
40 |
+
attention[name] = attn
|
41 |
+
|
42 |
+
return hook
|
43 |
+
|
44 |
+
|
45 |
+
def get_mean_attention_map(attn, token, shape):
|
46 |
+
attn = attn[:, :, token, 1:]
|
47 |
+
attn = attn.unflatten(2, torch.Size([shape[2] // 16, shape[3] // 16])).float()
|
48 |
+
attn = torch.nn.functional.interpolate(
|
49 |
+
attn, size=shape[2:], mode="bicubic", align_corners=False
|
50 |
+
).squeeze(0)
|
51 |
+
|
52 |
+
all_attn = torch.mean(attn, 0)
|
53 |
+
|
54 |
+
return all_attn
|
55 |
+
|
56 |
+
|
57 |
+
class Slice(nn.Module):
|
58 |
+
def __init__(self, start_index=1):
|
59 |
+
super(Slice, self).__init__()
|
60 |
+
self.start_index = start_index
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
return x[:, self.start_index :]
|
64 |
+
|
65 |
+
|
66 |
+
class AddReadout(nn.Module):
|
67 |
+
def __init__(self, start_index=1):
|
68 |
+
super(AddReadout, self).__init__()
|
69 |
+
self.start_index = start_index
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
if self.start_index == 2:
|
73 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
74 |
+
else:
|
75 |
+
readout = x[:, 0]
|
76 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
77 |
+
|
78 |
+
|
79 |
+
class ProjectReadout(nn.Module):
|
80 |
+
def __init__(self, in_features, start_index=1):
|
81 |
+
super(ProjectReadout, self).__init__()
|
82 |
+
self.start_index = start_index
|
83 |
+
|
84 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
88 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
89 |
+
|
90 |
+
return self.project(features)
|
91 |
+
|
92 |
+
|
93 |
+
class Transpose(nn.Module):
|
94 |
+
def __init__(self, dim0, dim1):
|
95 |
+
super(Transpose, self).__init__()
|
96 |
+
self.dim0 = dim0
|
97 |
+
self.dim1 = dim1
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = x.transpose(self.dim0, self.dim1)
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
def forward_vit(pretrained, x):
|
105 |
+
b, c, h, w = x.shape
|
106 |
+
|
107 |
+
glob = pretrained.model.forward_flex(x)
|
108 |
+
|
109 |
+
layer_1 = pretrained.activations["1"]
|
110 |
+
layer_2 = pretrained.activations["2"]
|
111 |
+
layer_3 = pretrained.activations["3"]
|
112 |
+
layer_4 = pretrained.activations["4"]
|
113 |
+
|
114 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
115 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
116 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
117 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
118 |
+
|
119 |
+
unflatten = nn.Sequential(
|
120 |
+
nn.Unflatten(
|
121 |
+
2,
|
122 |
+
torch.Size(
|
123 |
+
[
|
124 |
+
h // pretrained.model.patch_size[1],
|
125 |
+
w // pretrained.model.patch_size[0],
|
126 |
+
]
|
127 |
+
),
|
128 |
+
)
|
129 |
+
)
|
130 |
+
|
131 |
+
if layer_1.ndim == 3:
|
132 |
+
layer_1 = unflatten(layer_1)
|
133 |
+
if layer_2.ndim == 3:
|
134 |
+
layer_2 = unflatten(layer_2)
|
135 |
+
if layer_3.ndim == 3:
|
136 |
+
layer_3 = unflatten(layer_3)
|
137 |
+
if layer_4.ndim == 3:
|
138 |
+
layer_4 = unflatten(layer_4)
|
139 |
+
|
140 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
141 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
142 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
143 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
144 |
+
|
145 |
+
return layer_1, layer_2, layer_3, layer_4
|
146 |
+
|
147 |
+
|
148 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
149 |
+
posemb_tok, posemb_grid = (
|
150 |
+
posemb[:, : self.start_index],
|
151 |
+
posemb[0, self.start_index :],
|
152 |
+
)
|
153 |
+
|
154 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
155 |
+
|
156 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
157 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
158 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
159 |
+
|
160 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
161 |
+
|
162 |
+
return posemb
|
163 |
+
|
164 |
+
|
165 |
+
def forward_flex(self, x):
|
166 |
+
b, c, h, w = x.shape
|
167 |
+
|
168 |
+
pos_embed = self._resize_pos_embed(
|
169 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
170 |
+
)
|
171 |
+
|
172 |
+
B = x.shape[0]
|
173 |
+
|
174 |
+
if hasattr(self.patch_embed, "backbone"):
|
175 |
+
x = self.patch_embed.backbone(x)
|
176 |
+
if isinstance(x, (list, tuple)):
|
177 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
178 |
+
|
179 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
180 |
+
|
181 |
+
if getattr(self, "dist_token", None) is not None:
|
182 |
+
cls_tokens = self.cls_token.expand(
|
183 |
+
B, -1, -1
|
184 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
185 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
186 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
187 |
+
else:
|
188 |
+
cls_tokens = self.cls_token.expand(
|
189 |
+
B, -1, -1
|
190 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
191 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
192 |
+
|
193 |
+
x = x + pos_embed
|
194 |
+
x = self.pos_drop(x)
|
195 |
+
|
196 |
+
for blk in self.blocks:
|
197 |
+
x = blk(x)
|
198 |
+
|
199 |
+
x = self.norm(x)
|
200 |
+
|
201 |
+
return x
|
202 |
+
|
203 |
+
|
204 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
205 |
+
if use_readout == "ignore":
|
206 |
+
readout_oper = [Slice(start_index)] * len(features)
|
207 |
+
elif use_readout == "add":
|
208 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
209 |
+
elif use_readout == "project":
|
210 |
+
readout_oper = [
|
211 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
212 |
+
]
|
213 |
+
else:
|
214 |
+
assert (
|
215 |
+
False
|
216 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
217 |
+
|
218 |
+
return readout_oper
|
219 |
+
|
220 |
+
|
221 |
+
def _make_vit_b16_backbone(
|
222 |
+
model,
|
223 |
+
features=[96, 192, 384, 768],
|
224 |
+
size=[384, 384],
|
225 |
+
hooks=[2, 5, 8, 11],
|
226 |
+
vit_features=768,
|
227 |
+
use_readout="ignore",
|
228 |
+
start_index=1,
|
229 |
+
enable_attention_hooks=False,
|
230 |
+
):
|
231 |
+
pretrained = nn.Module()
|
232 |
+
|
233 |
+
pretrained.model = model
|
234 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
235 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
236 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
237 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
238 |
+
|
239 |
+
pretrained.activations = activations
|
240 |
+
|
241 |
+
if enable_attention_hooks:
|
242 |
+
pretrained.model.blocks[hooks[0]].attn.register_forward_hook(
|
243 |
+
get_attention("attn_1")
|
244 |
+
)
|
245 |
+
pretrained.model.blocks[hooks[1]].attn.register_forward_hook(
|
246 |
+
get_attention("attn_2")
|
247 |
+
)
|
248 |
+
pretrained.model.blocks[hooks[2]].attn.register_forward_hook(
|
249 |
+
get_attention("attn_3")
|
250 |
+
)
|
251 |
+
pretrained.model.blocks[hooks[3]].attn.register_forward_hook(
|
252 |
+
get_attention("attn_4")
|
253 |
+
)
|
254 |
+
pretrained.attention = attention
|
255 |
+
|
256 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
257 |
+
|
258 |
+
# 32, 48, 136, 384
|
259 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
260 |
+
readout_oper[0],
|
261 |
+
Transpose(1, 2),
|
262 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
263 |
+
nn.Conv2d(
|
264 |
+
in_channels=vit_features,
|
265 |
+
out_channels=features[0],
|
266 |
+
kernel_size=1,
|
267 |
+
stride=1,
|
268 |
+
padding=0,
|
269 |
+
),
|
270 |
+
nn.ConvTranspose2d(
|
271 |
+
in_channels=features[0],
|
272 |
+
out_channels=features[0],
|
273 |
+
kernel_size=4,
|
274 |
+
stride=4,
|
275 |
+
padding=0,
|
276 |
+
bias=True,
|
277 |
+
dilation=1,
|
278 |
+
groups=1,
|
279 |
+
),
|
280 |
+
)
|
281 |
+
|
282 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
283 |
+
readout_oper[1],
|
284 |
+
Transpose(1, 2),
|
285 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
286 |
+
nn.Conv2d(
|
287 |
+
in_channels=vit_features,
|
288 |
+
out_channels=features[1],
|
289 |
+
kernel_size=1,
|
290 |
+
stride=1,
|
291 |
+
padding=0,
|
292 |
+
),
|
293 |
+
nn.ConvTranspose2d(
|
294 |
+
in_channels=features[1],
|
295 |
+
out_channels=features[1],
|
296 |
+
kernel_size=2,
|
297 |
+
stride=2,
|
298 |
+
padding=0,
|
299 |
+
bias=True,
|
300 |
+
dilation=1,
|
301 |
+
groups=1,
|
302 |
+
),
|
303 |
+
)
|
304 |
+
|
305 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
306 |
+
readout_oper[2],
|
307 |
+
Transpose(1, 2),
|
308 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
309 |
+
nn.Conv2d(
|
310 |
+
in_channels=vit_features,
|
311 |
+
out_channels=features[2],
|
312 |
+
kernel_size=1,
|
313 |
+
stride=1,
|
314 |
+
padding=0,
|
315 |
+
),
|
316 |
+
)
|
317 |
+
|
318 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
319 |
+
readout_oper[3],
|
320 |
+
Transpose(1, 2),
|
321 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
322 |
+
nn.Conv2d(
|
323 |
+
in_channels=vit_features,
|
324 |
+
out_channels=features[3],
|
325 |
+
kernel_size=1,
|
326 |
+
stride=1,
|
327 |
+
padding=0,
|
328 |
+
),
|
329 |
+
nn.Conv2d(
|
330 |
+
in_channels=features[3],
|
331 |
+
out_channels=features[3],
|
332 |
+
kernel_size=3,
|
333 |
+
stride=2,
|
334 |
+
padding=1,
|
335 |
+
),
|
336 |
+
)
|
337 |
+
|
338 |
+
pretrained.model.start_index = start_index
|
339 |
+
pretrained.model.patch_size = [16, 16]
|
340 |
+
|
341 |
+
# We inject this function into the VisionTransformer instances so that
|
342 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
343 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
344 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
345 |
+
_resize_pos_embed, pretrained.model
|
346 |
+
)
|
347 |
+
|
348 |
+
return pretrained
|
349 |
+
|
350 |
+
|
351 |
+
def _make_vit_b_rn50_backbone(
|
352 |
+
model,
|
353 |
+
features=[256, 512, 768, 768],
|
354 |
+
size=[384, 384],
|
355 |
+
hooks=[0, 1, 8, 11],
|
356 |
+
vit_features=768,
|
357 |
+
use_vit_only=False,
|
358 |
+
use_readout="ignore",
|
359 |
+
start_index=1,
|
360 |
+
enable_attention_hooks=False,
|
361 |
+
):
|
362 |
+
pretrained = nn.Module()
|
363 |
+
|
364 |
+
pretrained.model = model
|
365 |
+
|
366 |
+
if use_vit_only == True:
|
367 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
368 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
369 |
+
else:
|
370 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
371 |
+
get_activation("1")
|
372 |
+
)
|
373 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
374 |
+
get_activation("2")
|
375 |
+
)
|
376 |
+
|
377 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
378 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
379 |
+
|
380 |
+
if enable_attention_hooks:
|
381 |
+
pretrained.model.blocks[2].attn.register_forward_hook(get_attention("attn_1"))
|
382 |
+
pretrained.model.blocks[5].attn.register_forward_hook(get_attention("attn_2"))
|
383 |
+
pretrained.model.blocks[8].attn.register_forward_hook(get_attention("attn_3"))
|
384 |
+
pretrained.model.blocks[11].attn.register_forward_hook(get_attention("attn_4"))
|
385 |
+
pretrained.attention = attention
|
386 |
+
|
387 |
+
pretrained.activations = activations
|
388 |
+
|
389 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
390 |
+
|
391 |
+
if use_vit_only == True:
|
392 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
393 |
+
readout_oper[0],
|
394 |
+
Transpose(1, 2),
|
395 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
396 |
+
nn.Conv2d(
|
397 |
+
in_channels=vit_features,
|
398 |
+
out_channels=features[0],
|
399 |
+
kernel_size=1,
|
400 |
+
stride=1,
|
401 |
+
padding=0,
|
402 |
+
),
|
403 |
+
nn.ConvTranspose2d(
|
404 |
+
in_channels=features[0],
|
405 |
+
out_channels=features[0],
|
406 |
+
kernel_size=4,
|
407 |
+
stride=4,
|
408 |
+
padding=0,
|
409 |
+
bias=True,
|
410 |
+
dilation=1,
|
411 |
+
groups=1,
|
412 |
+
),
|
413 |
+
)
|
414 |
+
|
415 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
416 |
+
readout_oper[1],
|
417 |
+
Transpose(1, 2),
|
418 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
419 |
+
nn.Conv2d(
|
420 |
+
in_channels=vit_features,
|
421 |
+
out_channels=features[1],
|
422 |
+
kernel_size=1,
|
423 |
+
stride=1,
|
424 |
+
padding=0,
|
425 |
+
),
|
426 |
+
nn.ConvTranspose2d(
|
427 |
+
in_channels=features[1],
|
428 |
+
out_channels=features[1],
|
429 |
+
kernel_size=2,
|
430 |
+
stride=2,
|
431 |
+
padding=0,
|
432 |
+
bias=True,
|
433 |
+
dilation=1,
|
434 |
+
groups=1,
|
435 |
+
),
|
436 |
+
)
|
437 |
+
else:
|
438 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
439 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
440 |
+
)
|
441 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
442 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
443 |
+
)
|
444 |
+
|
445 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
446 |
+
readout_oper[2],
|
447 |
+
Transpose(1, 2),
|
448 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
449 |
+
nn.Conv2d(
|
450 |
+
in_channels=vit_features,
|
451 |
+
out_channels=features[2],
|
452 |
+
kernel_size=1,
|
453 |
+
stride=1,
|
454 |
+
padding=0,
|
455 |
+
),
|
456 |
+
)
|
457 |
+
|
458 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
459 |
+
readout_oper[3],
|
460 |
+
Transpose(1, 2),
|
461 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
462 |
+
nn.Conv2d(
|
463 |
+
in_channels=vit_features,
|
464 |
+
out_channels=features[3],
|
465 |
+
kernel_size=1,
|
466 |
+
stride=1,
|
467 |
+
padding=0,
|
468 |
+
),
|
469 |
+
nn.Conv2d(
|
470 |
+
in_channels=features[3],
|
471 |
+
out_channels=features[3],
|
472 |
+
kernel_size=3,
|
473 |
+
stride=2,
|
474 |
+
padding=1,
|
475 |
+
),
|
476 |
+
)
|
477 |
+
|
478 |
+
pretrained.model.start_index = start_index
|
479 |
+
pretrained.model.patch_size = [16, 16]
|
480 |
+
|
481 |
+
# We inject this function into the VisionTransformer instances so that
|
482 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
483 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
484 |
+
|
485 |
+
# We inject this function into the VisionTransformer instances so that
|
486 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
487 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
488 |
+
_resize_pos_embed, pretrained.model
|
489 |
+
)
|
490 |
+
|
491 |
+
return pretrained
|
492 |
+
|
493 |
+
|
494 |
+
def _make_pretrained_vitb_rn50_384(
|
495 |
+
pretrained,
|
496 |
+
use_readout="ignore",
|
497 |
+
hooks=None,
|
498 |
+
use_vit_only=False,
|
499 |
+
enable_attention_hooks=False,
|
500 |
+
):
|
501 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
502 |
+
|
503 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
504 |
+
return _make_vit_b_rn50_backbone(
|
505 |
+
model,
|
506 |
+
features=[256, 512, 768, 768],
|
507 |
+
size=[384, 384],
|
508 |
+
hooks=hooks,
|
509 |
+
use_vit_only=use_vit_only,
|
510 |
+
use_readout=use_readout,
|
511 |
+
enable_attention_hooks=enable_attention_hooks,
|
512 |
+
)
|
513 |
+
|
514 |
+
|
515 |
+
def _make_pretrained_vitl16_384(
|
516 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
517 |
+
):
|
518 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
519 |
+
|
520 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
521 |
+
return _make_vit_b16_backbone(
|
522 |
+
model,
|
523 |
+
features=[256, 512, 1024, 1024],
|
524 |
+
hooks=hooks,
|
525 |
+
vit_features=1024,
|
526 |
+
use_readout=use_readout,
|
527 |
+
enable_attention_hooks=enable_attention_hooks,
|
528 |
+
)
|
529 |
+
|
530 |
+
|
531 |
+
def _make_pretrained_vitb16_384(
|
532 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
533 |
+
):
|
534 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
535 |
+
|
536 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
537 |
+
return _make_vit_b16_backbone(
|
538 |
+
model,
|
539 |
+
features=[96, 192, 384, 768],
|
540 |
+
hooks=hooks,
|
541 |
+
use_readout=use_readout,
|
542 |
+
enable_attention_hooks=enable_attention_hooks,
|
543 |
+
)
|
544 |
+
|
545 |
+
|
546 |
+
def _make_pretrained_deitb16_384(
|
547 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
548 |
+
):
|
549 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
550 |
+
|
551 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
552 |
+
return _make_vit_b16_backbone(
|
553 |
+
model,
|
554 |
+
features=[96, 192, 384, 768],
|
555 |
+
hooks=hooks,
|
556 |
+
use_readout=use_readout,
|
557 |
+
enable_attention_hooks=enable_attention_hooks,
|
558 |
+
)
|
559 |
+
|
560 |
+
|
561 |
+
def _make_pretrained_deitb16_distil_384(
|
562 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
563 |
+
):
|
564 |
+
model = timm.create_model(
|
565 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
566 |
+
)
|
567 |
+
|
568 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
569 |
+
return _make_vit_b16_backbone(
|
570 |
+
model,
|
571 |
+
features=[96, 192, 384, 768],
|
572 |
+
hooks=hooks,
|
573 |
+
use_readout=use_readout,
|
574 |
+
start_index=2,
|
575 |
+
enable_attention_hooks=enable_attention_hooks,
|
576 |
+
)
|
prismer/experts/edge/generate_dataset.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import glob
|
8 |
+
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
from dataset.utils import *
|
11 |
+
from PIL import ImageFile
|
12 |
+
|
13 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
14 |
+
|
15 |
+
|
16 |
+
class Dataset(Dataset):
|
17 |
+
def __init__(self, data_path, transform):
|
18 |
+
self.data_path = data_path
|
19 |
+
self.transform = transform
|
20 |
+
data_folders = glob.glob(f'{data_path}/*/')
|
21 |
+
self.data_list = [data for f in data_folders for data in glob.glob(f + '*.JPEG')]
|
22 |
+
self.data_list += [data for f in data_folders for data in glob.glob(f + '*.jpg')]
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.data_list)
|
26 |
+
|
27 |
+
def __getitem__(self, index):
|
28 |
+
image_path = self.data_list[index]
|
29 |
+
image = Image.open(image_path).convert('RGB')
|
30 |
+
img_size = [image.size[0], image.size[1]]
|
31 |
+
image = self.transform(image)
|
32 |
+
return torch.flip(image, dims=(0, )) * 255., image_path, img_size
|
prismer/experts/edge/images.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def image_normalization(img, img_min=0, img_max=255,
|
7 |
+
epsilon=1e-12):
|
8 |
+
"""This is a typical image normalization function
|
9 |
+
where the minimum and maximum of the image is needed
|
10 |
+
source: https://en.wikipedia.org/wiki/Normalization_(image_processing)
|
11 |
+
|
12 |
+
:param img: an image could be gray scale or color
|
13 |
+
:param img_min: for default is 0
|
14 |
+
:param img_max: for default is 255
|
15 |
+
|
16 |
+
:return: a normalized image, if max is 255 the dtype is uint8
|
17 |
+
"""
|
18 |
+
|
19 |
+
img = np.float32(img)
|
20 |
+
# whenever an inconsistent image
|
21 |
+
img = (img - np.min(img)) * (img_max - img_min) / \
|
22 |
+
((np.max(img) - np.min(img)) + epsilon) + img_min
|
23 |
+
return img
|
24 |
+
|
25 |
+
|
26 |
+
def fuse_edge(pred):
|
27 |
+
edge_maps = []
|
28 |
+
for i in pred:
|
29 |
+
tmp = torch.sigmoid(i).cpu().detach().numpy()
|
30 |
+
edge_maps.append(tmp)
|
31 |
+
tensor = np.array(edge_maps)
|
32 |
+
|
33 |
+
fuses = []
|
34 |
+
for idx in range(tensor.shape[1]):
|
35 |
+
tmp = tensor[:, idx, ...]
|
36 |
+
tmp = np.squeeze(tmp)
|
37 |
+
|
38 |
+
# Iterate our all 7 NN outputs for a particular image
|
39 |
+
for i in range(tmp.shape[0]):
|
40 |
+
tmp_img = tmp[i]
|
41 |
+
tmp_img = np.uint8(image_normalization(tmp_img))
|
42 |
+
tmp_img = cv2.bitwise_not(tmp_img)
|
43 |
+
|
44 |
+
if i == 6:
|
45 |
+
fuse = tmp_img
|
46 |
+
fuse = fuse.astype(np.uint8)
|
47 |
+
fuses.append(fuse)
|
48 |
+
return fuses
|
49 |
+
|
50 |
+
|
prismer/experts/edge/model.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def weight_init(m):
|
7 |
+
if isinstance(m, (nn.Conv2d,)):
|
8 |
+
# torch.nn.init.xavier_uniform_(m.weight, gain=1.0)
|
9 |
+
torch.nn.init.xavier_normal_(m.weight, gain=1.0)
|
10 |
+
# torch.nn.init.normal_(m.weight, mean=0.0, std=0.01)
|
11 |
+
if m.weight.data.shape[1] == torch.Size([1]):
|
12 |
+
torch.nn.init.normal_(m.weight, mean=0.0)
|
13 |
+
|
14 |
+
if m.bias is not None:
|
15 |
+
torch.nn.init.zeros_(m.bias)
|
16 |
+
|
17 |
+
# for fusion layer
|
18 |
+
if isinstance(m, (nn.ConvTranspose2d,)):
|
19 |
+
# torch.nn.init.xavier_uniform_(m.weight, gain=1.0)
|
20 |
+
torch.nn.init.xavier_normal_(m.weight, gain=1.0)
|
21 |
+
# torch.nn.init.normal_(m.weight, mean=0.0, std=0.01)
|
22 |
+
|
23 |
+
if m.weight.data.shape[1] == torch.Size([1]):
|
24 |
+
torch.nn.init.normal_(m.weight, std=0.1)
|
25 |
+
if m.bias is not None:
|
26 |
+
torch.nn.init.zeros_(m.bias)
|
27 |
+
|
28 |
+
|
29 |
+
class CoFusion(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self, in_ch, out_ch):
|
32 |
+
super(CoFusion, self).__init__()
|
33 |
+
self.conv1 = nn.Conv2d(in_ch, 64, kernel_size=3,
|
34 |
+
stride=1, padding=1)
|
35 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3,
|
36 |
+
stride=1, padding=1)
|
37 |
+
self.conv3 = nn.Conv2d(64, out_ch, kernel_size=3,
|
38 |
+
stride=1, padding=1)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
|
41 |
+
self.norm_layer1 = nn.GroupNorm(4, 64)
|
42 |
+
self.norm_layer2 = nn.GroupNorm(4, 64)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
# fusecat = torch.cat(x, dim=1)
|
46 |
+
attn = self.relu(self.norm_layer1(self.conv1(x)))
|
47 |
+
attn = self.relu(self.norm_layer2(self.conv2(attn)))
|
48 |
+
attn = F.softmax(self.conv3(attn), dim=1)
|
49 |
+
|
50 |
+
# return ((fusecat * attn).sum(1)).unsqueeze(1)
|
51 |
+
return ((x * attn).sum(1)).unsqueeze(1)
|
52 |
+
|
53 |
+
class _DenseLayer(nn.Sequential):
|
54 |
+
def __init__(self, input_features, out_features):
|
55 |
+
super(_DenseLayer, self).__init__()
|
56 |
+
|
57 |
+
# self.add_module('relu2', nn.ReLU(inplace=True)),
|
58 |
+
self.add_module('conv1', nn.Conv2d(input_features, out_features,
|
59 |
+
kernel_size=3, stride=1, padding=2, bias=True)),
|
60 |
+
self.add_module('norm1', nn.BatchNorm2d(out_features)),
|
61 |
+
self.add_module('relu1', nn.ReLU(inplace=True)),
|
62 |
+
self.add_module('conv2', nn.Conv2d(out_features, out_features,
|
63 |
+
kernel_size=3, stride=1, bias=True)),
|
64 |
+
self.add_module('norm2', nn.BatchNorm2d(out_features))
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x1, x2 = x
|
68 |
+
|
69 |
+
new_features = super(_DenseLayer, self).forward(F.relu(x1)) # F.relu()
|
70 |
+
# if new_features.shape[-1]!=x2.shape[-1]:
|
71 |
+
# new_features =F.interpolate(new_features,size=(x2.shape[2],x2.shape[-1]), mode='bicubic',
|
72 |
+
# align_corners=False)
|
73 |
+
return 0.5 * (new_features + x2), x2
|
74 |
+
|
75 |
+
|
76 |
+
class _DenseBlock(nn.Sequential):
|
77 |
+
def __init__(self, num_layers, input_features, out_features):
|
78 |
+
super(_DenseBlock, self).__init__()
|
79 |
+
for i in range(num_layers):
|
80 |
+
layer = _DenseLayer(input_features, out_features)
|
81 |
+
self.add_module('denselayer%d' % (i + 1), layer)
|
82 |
+
input_features = out_features
|
83 |
+
|
84 |
+
|
85 |
+
class UpConvBlock(nn.Module):
|
86 |
+
def __init__(self, in_features, up_scale):
|
87 |
+
super(UpConvBlock, self).__init__()
|
88 |
+
self.up_factor = 2
|
89 |
+
self.constant_features = 16
|
90 |
+
|
91 |
+
layers = self.make_deconv_layers(in_features, up_scale)
|
92 |
+
assert layers is not None, layers
|
93 |
+
self.features = nn.Sequential(*layers)
|
94 |
+
|
95 |
+
def make_deconv_layers(self, in_features, up_scale):
|
96 |
+
layers = []
|
97 |
+
all_pads=[0,0,1,3,7]
|
98 |
+
for i in range(up_scale):
|
99 |
+
kernel_size = 2 ** up_scale
|
100 |
+
pad = all_pads[up_scale] # kernel_size-1
|
101 |
+
out_features = self.compute_out_features(i, up_scale)
|
102 |
+
layers.append(nn.Conv2d(in_features, out_features, 1))
|
103 |
+
layers.append(nn.ReLU(inplace=True))
|
104 |
+
layers.append(nn.ConvTranspose2d(
|
105 |
+
out_features, out_features, kernel_size, stride=2, padding=pad))
|
106 |
+
in_features = out_features
|
107 |
+
return layers
|
108 |
+
|
109 |
+
def compute_out_features(self, idx, up_scale):
|
110 |
+
return 1 if idx == up_scale - 1 else self.constant_features
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
return self.features(x)
|
114 |
+
|
115 |
+
|
116 |
+
class SingleConvBlock(nn.Module):
|
117 |
+
def __init__(self, in_features, out_features, stride,
|
118 |
+
use_bs=True
|
119 |
+
):
|
120 |
+
super(SingleConvBlock, self).__init__()
|
121 |
+
self.use_bn = use_bs
|
122 |
+
self.conv = nn.Conv2d(in_features, out_features, 1, stride=stride,
|
123 |
+
bias=True)
|
124 |
+
self.bn = nn.BatchNorm2d(out_features)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
x = self.conv(x)
|
128 |
+
if self.use_bn:
|
129 |
+
x = self.bn(x)
|
130 |
+
return x
|
131 |
+
|
132 |
+
|
133 |
+
class DoubleConvBlock(nn.Module):
|
134 |
+
def __init__(self, in_features, mid_features,
|
135 |
+
out_features=None,
|
136 |
+
stride=1,
|
137 |
+
use_act=True):
|
138 |
+
super(DoubleConvBlock, self).__init__()
|
139 |
+
|
140 |
+
self.use_act = use_act
|
141 |
+
if out_features is None:
|
142 |
+
out_features = mid_features
|
143 |
+
self.conv1 = nn.Conv2d(in_features, mid_features,
|
144 |
+
3, padding=1, stride=stride)
|
145 |
+
self.bn1 = nn.BatchNorm2d(mid_features)
|
146 |
+
self.conv2 = nn.Conv2d(mid_features, out_features, 3, padding=1)
|
147 |
+
self.bn2 = nn.BatchNorm2d(out_features)
|
148 |
+
self.relu = nn.ReLU(inplace=True)
|
149 |
+
|
150 |
+
def forward(self, x):
|
151 |
+
x = self.conv1(x)
|
152 |
+
x = self.bn1(x)
|
153 |
+
x = self.relu(x)
|
154 |
+
x = self.conv2(x)
|
155 |
+
x = self.bn2(x)
|
156 |
+
if self.use_act:
|
157 |
+
x = self.relu(x)
|
158 |
+
return x
|
159 |
+
|
160 |
+
|
161 |
+
class DexiNed(nn.Module):
|
162 |
+
""" Definition of the DXtrem network. """
|
163 |
+
|
164 |
+
def __init__(self):
|
165 |
+
super(DexiNed, self).__init__()
|
166 |
+
self.block_1 = DoubleConvBlock(3, 32, 64, stride=2,)
|
167 |
+
self.block_2 = DoubleConvBlock(64, 128, use_act=False)
|
168 |
+
self.dblock_3 = _DenseBlock(2, 128, 256) # [128,256,100,100]
|
169 |
+
self.dblock_4 = _DenseBlock(3, 256, 512)
|
170 |
+
self.dblock_5 = _DenseBlock(3, 512, 512)
|
171 |
+
self.dblock_6 = _DenseBlock(3, 512, 256)
|
172 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
173 |
+
|
174 |
+
# left skip connections, figure in Journal
|
175 |
+
self.side_1 = SingleConvBlock(64, 128, 2)
|
176 |
+
self.side_2 = SingleConvBlock(128, 256, 2)
|
177 |
+
self.side_3 = SingleConvBlock(256, 512, 2)
|
178 |
+
self.side_4 = SingleConvBlock(512, 512, 1)
|
179 |
+
self.side_5 = SingleConvBlock(512, 256, 1) # Sory I forget to comment this line :(
|
180 |
+
|
181 |
+
# right skip connections, figure in Journal paper
|
182 |
+
self.pre_dense_2 = SingleConvBlock(128, 256, 2)
|
183 |
+
self.pre_dense_3 = SingleConvBlock(128, 256, 1)
|
184 |
+
self.pre_dense_4 = SingleConvBlock(256, 512, 1)
|
185 |
+
self.pre_dense_5 = SingleConvBlock(512, 512, 1)
|
186 |
+
self.pre_dense_6 = SingleConvBlock(512, 256, 1)
|
187 |
+
|
188 |
+
|
189 |
+
self.up_block_1 = UpConvBlock(64, 1)
|
190 |
+
self.up_block_2 = UpConvBlock(128, 1)
|
191 |
+
self.up_block_3 = UpConvBlock(256, 2)
|
192 |
+
self.up_block_4 = UpConvBlock(512, 3)
|
193 |
+
self.up_block_5 = UpConvBlock(512, 4)
|
194 |
+
self.up_block_6 = UpConvBlock(256, 4)
|
195 |
+
self.block_cat = SingleConvBlock(6, 1, stride=1, use_bs=False) # hed fusion method
|
196 |
+
# self.block_cat = CoFusion(6,6)# cats fusion method
|
197 |
+
|
198 |
+
|
199 |
+
self.apply(weight_init)
|
200 |
+
|
201 |
+
def slice(self, tensor, slice_shape):
|
202 |
+
t_shape = tensor.shape
|
203 |
+
height, width = slice_shape
|
204 |
+
if t_shape[-1]!=slice_shape[-1]:
|
205 |
+
new_tensor = F.interpolate(
|
206 |
+
tensor, size=(height, width), mode='bicubic',align_corners=False)
|
207 |
+
else:
|
208 |
+
new_tensor=tensor
|
209 |
+
# tensor[..., :height, :width]
|
210 |
+
return new_tensor
|
211 |
+
|
212 |
+
def forward(self, x):
|
213 |
+
assert x.ndim == 4, x.shape
|
214 |
+
|
215 |
+
# Block 1
|
216 |
+
block_1 = self.block_1(x)
|
217 |
+
block_1_side = self.side_1(block_1)
|
218 |
+
|
219 |
+
# Block 2
|
220 |
+
block_2 = self.block_2(block_1)
|
221 |
+
block_2_down = self.maxpool(block_2)
|
222 |
+
block_2_add = block_2_down + block_1_side
|
223 |
+
block_2_side = self.side_2(block_2_add)
|
224 |
+
|
225 |
+
# Block 3
|
226 |
+
block_3_pre_dense = self.pre_dense_3(block_2_down)
|
227 |
+
block_3, _ = self.dblock_3([block_2_add, block_3_pre_dense])
|
228 |
+
block_3_down = self.maxpool(block_3) # [128,256,50,50]
|
229 |
+
block_3_add = block_3_down + block_2_side
|
230 |
+
block_3_side = self.side_3(block_3_add)
|
231 |
+
|
232 |
+
# Block 4
|
233 |
+
block_2_resize_half = self.pre_dense_2(block_2_down)
|
234 |
+
block_4_pre_dense = self.pre_dense_4(block_3_down+block_2_resize_half)
|
235 |
+
block_4, _ = self.dblock_4([block_3_add, block_4_pre_dense])
|
236 |
+
block_4_down = self.maxpool(block_4)
|
237 |
+
block_4_add = block_4_down + block_3_side
|
238 |
+
block_4_side = self.side_4(block_4_add)
|
239 |
+
|
240 |
+
# Block 5
|
241 |
+
block_5_pre_dense = self.pre_dense_5(
|
242 |
+
block_4_down) #block_5_pre_dense_512 +block_4_down
|
243 |
+
block_5, _ = self.dblock_5([block_4_add, block_5_pre_dense])
|
244 |
+
block_5_add = block_5 + block_4_side
|
245 |
+
|
246 |
+
# Block 6
|
247 |
+
block_6_pre_dense = self.pre_dense_6(block_5)
|
248 |
+
block_6, _ = self.dblock_6([block_5_add, block_6_pre_dense])
|
249 |
+
|
250 |
+
# upsampling blocks
|
251 |
+
out_1 = self.up_block_1(block_1)
|
252 |
+
out_2 = self.up_block_2(block_2)
|
253 |
+
out_3 = self.up_block_3(block_3)
|
254 |
+
out_4 = self.up_block_4(block_4)
|
255 |
+
out_5 = self.up_block_5(block_5)
|
256 |
+
out_6 = self.up_block_6(block_6)
|
257 |
+
results = [out_1, out_2, out_3, out_4, out_5, out_6]
|
258 |
+
|
259 |
+
# concatenate multiscale outputs
|
260 |
+
block_cat = torch.cat(results, dim=1) # Bx6xHxW
|
261 |
+
block_cat = self.block_cat(block_cat) # Bx1xHxW
|
262 |
+
|
263 |
+
# return results
|
264 |
+
results.append(block_cat)
|
265 |
+
return results
|
266 |
+
|
267 |
+
|
268 |
+
if __name__ == '__main__':
|
269 |
+
batch_size = 8
|
270 |
+
img_height = 352
|
271 |
+
img_width = 352
|
272 |
+
|
273 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
274 |
+
device = "cpu"
|
275 |
+
input = torch.rand(batch_size, 3, img_height, img_width).to(device)
|
276 |
+
# target = torch.rand(batch_size, 1, img_height, img_width).to(device)
|
277 |
+
print(f"input shape: {input.shape}")
|
278 |
+
model = DexiNed().to(device)
|
279 |
+
output = model(input)
|
280 |
+
print(f"output shapes: {[t.shape for t in output]}")
|
281 |
+
|
282 |
+
# for i in range(20000):
|
283 |
+
# print(i)
|
284 |
+
# output = model(input)
|
285 |
+
# loss = nn.MSELoss()(output[-1], target)
|
286 |
+
# loss.backward()
|
prismer/experts/generate_depth.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import os
|
9 |
+
try:
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
except ModuleNotFoundError:
|
12 |
+
import ruamel.yaml as yaml
|
13 |
+
|
14 |
+
from experts.model_bank import load_expert_model
|
15 |
+
from experts.depth.generate_dataset import Dataset
|
16 |
+
import PIL.Image as Image
|
17 |
+
from accelerate import Accelerator
|
18 |
+
from tqdm import tqdm
|
19 |
+
|
20 |
+
model, transform = load_expert_model(task='depth')
|
21 |
+
accelerator = Accelerator(mixed_precision='fp16')
|
22 |
+
|
23 |
+
config = yaml.load(open('configs/experts.yaml', 'r'), Loader=yaml.Loader)
|
24 |
+
data_path = config['data_path']
|
25 |
+
save_path = os.path.join(config['save_path'], 'depth')
|
26 |
+
|
27 |
+
batch_size = 64
|
28 |
+
dataset = Dataset(data_path, transform)
|
29 |
+
data_loader = torch.utils.data.DataLoader(
|
30 |
+
dataset=dataset,
|
31 |
+
batch_size=batch_size,
|
32 |
+
shuffle=False,
|
33 |
+
num_workers=4,
|
34 |
+
pin_memory=True
|
35 |
+
)
|
36 |
+
|
37 |
+
model, data_loader = accelerator.prepare(model, data_loader)
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
for i, (test_data, img_path, img_size) in enumerate(tqdm(data_loader)):
|
41 |
+
test_pred = model(test_data)
|
42 |
+
|
43 |
+
for k in range(len(test_pred)):
|
44 |
+
img_path_split = img_path[k].split('/')
|
45 |
+
ps = img_path[k].split('.')[-1]
|
46 |
+
im_save_path = os.path.join(save_path, img_path_split[-3], img_path_split[-2])
|
47 |
+
os.makedirs(im_save_path, exist_ok=True)
|
48 |
+
|
49 |
+
im_size = img_size[0][k].item(), img_size[1][k].item()
|
50 |
+
depth = test_pred[k]
|
51 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min())
|
52 |
+
depth = torch.nn.functional.interpolate(depth.unsqueeze(0).unsqueeze(1), size=(im_size[1], im_size[0]), mode='bilinear', align_corners=True)
|
53 |
+
depth_im = Image.fromarray(255 * depth[0, 0].detach().cpu().numpy()).convert('L')
|
54 |
+
depth_im.save(os.path.join(im_save_path, img_path_split[-1].replace(f'.{ps}', '.png')))
|
55 |
+
|
56 |
+
|
prismer/experts/generate_edge.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import os
|
9 |
+
try:
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
except ModuleNotFoundError:
|
12 |
+
import ruamel.yaml as yaml
|
13 |
+
|
14 |
+
from experts.model_bank import load_expert_model
|
15 |
+
from experts.edge.generate_dataset import Dataset
|
16 |
+
from experts.edge.images import fuse_edge
|
17 |
+
import PIL.Image as Image
|
18 |
+
from accelerate import Accelerator
|
19 |
+
from tqdm import tqdm
|
20 |
+
|
21 |
+
|
22 |
+
model, transform = load_expert_model(task='edge')
|
23 |
+
accelerator = Accelerator(mixed_precision='fp16')
|
24 |
+
|
25 |
+
config = yaml.load(open('configs/experts.yaml', 'r'), Loader=yaml.Loader)
|
26 |
+
data_path = config['data_path']
|
27 |
+
save_path = os.path.join(config['save_path'], 'edge')
|
28 |
+
|
29 |
+
batch_size = 64
|
30 |
+
dataset = Dataset(data_path, transform)
|
31 |
+
data_loader = torch.utils.data.DataLoader(
|
32 |
+
dataset=dataset,
|
33 |
+
batch_size=batch_size,
|
34 |
+
shuffle=False,
|
35 |
+
num_workers=4,
|
36 |
+
pin_memory=True
|
37 |
+
)
|
38 |
+
|
39 |
+
model, data_loader = accelerator.prepare(model, data_loader)
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
for i, (test_data, img_path, img_size) in enumerate(tqdm(data_loader)):
|
43 |
+
test_pred = model(test_data)
|
44 |
+
fuses = fuse_edge(test_pred)
|
45 |
+
for k in range(len(fuses)):
|
46 |
+
edge = fuses[k]
|
47 |
+
img_path_split = img_path[k].split('/')
|
48 |
+
ps = img_path[k].split('.')[-1]
|
49 |
+
im_save_path = os.path.join(save_path, img_path_split[-3], img_path_split[-2])
|
50 |
+
os.makedirs(im_save_path, exist_ok=True)
|
51 |
+
|
52 |
+
im_size = img_size[0][k].item(), img_size[1][k].item()
|
53 |
+
edge = Image.fromarray(edge).convert('L')
|
54 |
+
edge = edge.resize((im_size[0], im_size[1]), resample=Image.Resampling.BILINEAR)
|
55 |
+
edge.save(os.path.join(im_save_path, img_path_split[-1].replace(f'.{ps}', '.png')))
|
56 |
+
|
57 |
+
|
prismer/experts/generate_normal.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import os
|
9 |
+
try:
|
10 |
+
import ruamel_yaml as yaml
|
11 |
+
except ModuleNotFoundError:
|
12 |
+
import ruamel.yaml as yaml
|
13 |
+
|
14 |
+
from experts.model_bank import load_expert_model
|
15 |
+
from experts.normal.generate_dataset import CustomDataset
|
16 |
+
import PIL.Image as Image
|
17 |
+
from accelerate import Accelerator
|
18 |
+
from tqdm import tqdm
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
|
22 |
+
model, transform = load_expert_model(task='normal')
|
23 |
+
accelerator = Accelerator(mixed_precision='fp16')
|
24 |
+
|
25 |
+
config = yaml.load(open('configs/experts.yaml', 'r'), Loader=yaml.Loader)
|
26 |
+
data_path = config['data_path']
|
27 |
+
save_path = os.path.join(config['save_path'], 'normal')
|
28 |
+
|
29 |
+
batch_size = 64
|
30 |
+
dataset = CustomDataset(data_path, transform)
|
31 |
+
data_loader = torch.utils.data.DataLoader(
|
32 |
+
dataset=dataset,
|
33 |
+
batch_size=batch_size,
|
34 |
+
shuffle=False,
|
35 |
+
num_workers=4,
|
36 |
+
pin_memory=True
|
37 |
+
)
|
38 |
+
|
39 |
+
model, data_loader = accelerator.prepare(model, data_loader)
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
for i, (test_data, img_path, img_size) in enumerate(tqdm(data_loader)):
|
43 |
+
test_pred = model(test_data)
|
44 |
+
pred_norm = test_pred[0][-1][:, :3]
|
45 |
+
for k in range(len(pred_norm)):
|
46 |
+
img_path_split = img_path[k].split('/')
|
47 |
+
ps = img_path[k].split('.')[-1]
|
48 |
+
im_save_path = os.path.join(save_path, img_path_split[-3], img_path_split[-2])
|
49 |
+
os.makedirs(im_save_path, exist_ok=True)
|
50 |
+
|
51 |
+
im_size = img_size[0][k].item(), img_size[1][k].item()
|
52 |
+
norm = pred_norm[k]
|
53 |
+
norm = ((norm + 1) * 0.5).clip(0, 1)
|
54 |
+
norm = torch.nn.functional.interpolate(norm.unsqueeze(0), size=(im_size[1], im_size[0]), mode='bilinear', align_corners=True)
|
55 |
+
norm_im = Image.fromarray((norm[0] * 255).permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8)).convert('RGB')
|
56 |
+
norm_im.save(os.path.join(im_save_path, img_path_split[-1].replace(f'.{ps}', '.png')))
|
57 |
+
|
58 |
+
|
prismer/experts/generate_objdet.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import copy
|
11 |
+
import PIL.Image as Image
|
12 |
+
try:
|
13 |
+
import ruamel_yaml as yaml
|
14 |
+
except ModuleNotFoundError:
|
15 |
+
import ruamel.yaml as yaml
|
16 |
+
|
17 |
+
from experts.model_bank import load_expert_model
|
18 |
+
from experts.obj_detection.generate_dataset import Dataset, collate_fn
|
19 |
+
from accelerate import Accelerator
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
model, transform = load_expert_model(task='obj_detection')
|
23 |
+
accelerator = Accelerator(mixed_precision='fp16')
|
24 |
+
|
25 |
+
config = yaml.load(open('configs/experts.yaml', 'r'), Loader=yaml.Loader)
|
26 |
+
data_path = config['data_path']
|
27 |
+
save_path = config['save_path']
|
28 |
+
|
29 |
+
depth_path = os.path.join(save_path, 'depth', data_path.split('/')[-1])
|
30 |
+
batch_size = 32
|
31 |
+
dataset = Dataset(data_path, depth_path, transform)
|
32 |
+
data_loader = torch.utils.data.DataLoader(
|
33 |
+
dataset=dataset,
|
34 |
+
batch_size=batch_size,
|
35 |
+
shuffle=False,
|
36 |
+
num_workers=4,
|
37 |
+
pin_memory=True,
|
38 |
+
collate_fn=collate_fn,
|
39 |
+
)
|
40 |
+
|
41 |
+
model, data_loader = accelerator.prepare(model, data_loader)
|
42 |
+
|
43 |
+
|
44 |
+
def get_mask_labels(depth, instance_boxes, instance_id):
|
45 |
+
obj_masks = []
|
46 |
+
obj_ids = []
|
47 |
+
for i in range(len(instance_boxes)):
|
48 |
+
is_duplicate = False
|
49 |
+
mask = torch.zeros_like(depth)
|
50 |
+
x1, y1, x2, y2 = instance_boxes[i][0].item(), instance_boxes[i][1].item(), \
|
51 |
+
instance_boxes[i][2].item(), instance_boxes[i][3].item()
|
52 |
+
mask[int(y1):int(y2), int(x1):int(x2)] = 1
|
53 |
+
for j in range(len(obj_masks)):
|
54 |
+
if ((mask + obj_masks[j]) == 2).sum() / ((mask + obj_masks[j]) > 0).sum() > 0.95:
|
55 |
+
is_duplicate = True
|
56 |
+
break
|
57 |
+
if not is_duplicate:
|
58 |
+
obj_masks.append(mask)
|
59 |
+
obj_ids.append(instance_id[i])
|
60 |
+
|
61 |
+
obj_masked_modified = copy.deepcopy(obj_masks[:])
|
62 |
+
for i in range(len(obj_masks) - 1):
|
63 |
+
mask1 = obj_masks[i]
|
64 |
+
mask1_ = obj_masked_modified[i]
|
65 |
+
for j in range(i + 1, len(obj_masks)):
|
66 |
+
mask2 = obj_masks[j]
|
67 |
+
mask2_ = obj_masked_modified[j]
|
68 |
+
# case 1: if they don't intersect we don't touch them
|
69 |
+
if ((mask1 + mask2) == 2).sum() == 0:
|
70 |
+
continue
|
71 |
+
# case 2: the entire object 1 is inside of object 2, we say object 1 is in front of object 2:
|
72 |
+
elif (((mask1 + mask2) == 2).float() - mask1).sum() == 0:
|
73 |
+
mask2_ -= mask1_
|
74 |
+
# case 3: the entire object 2 is inside of object 1, we say object 2 is in front of object 1:
|
75 |
+
elif (((mask1 + mask2) == 2).float() - mask2).sum() == 0:
|
76 |
+
mask1_ -= mask2_
|
77 |
+
# case 4: use depth to check object order:
|
78 |
+
else:
|
79 |
+
# object 1 is closer
|
80 |
+
if (depth * mask1).sum() / mask1.sum() > (depth * mask2).sum() / mask2.sum():
|
81 |
+
mask2_ -= ((mask1 + mask2) == 2).float()
|
82 |
+
# object 2 is closer
|
83 |
+
if (depth * mask1).sum() / mask1.sum() < (depth * mask2).sum() / mask2.sum():
|
84 |
+
mask1_ -= ((mask1 + mask2) == 2).float()
|
85 |
+
|
86 |
+
final_mask = torch.ones_like(depth) * 255
|
87 |
+
instance_labels = {}
|
88 |
+
for i in range(len(obj_masked_modified)):
|
89 |
+
final_mask = final_mask.masked_fill(obj_masked_modified[i] > 0, i)
|
90 |
+
instance_labels[i] = obj_ids[i].item()
|
91 |
+
return final_mask, instance_labels
|
92 |
+
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
for i, test_data in enumerate(tqdm(data_loader)):
|
96 |
+
test_pred = model(test_data)
|
97 |
+
for k in range(len(test_pred)):
|
98 |
+
instance_boxes = test_pred[k]['instances'].get_fields()['pred_boxes'].tensor
|
99 |
+
instance_id = test_pred[k]['instances'].get_fields()['pred_classes']
|
100 |
+
depth = test_data[k]['depth']
|
101 |
+
|
102 |
+
final_mask, instance_labels = get_mask_labels(depth, instance_boxes, instance_id)
|
103 |
+
|
104 |
+
img_path_split = test_data[k]['image_path'].split('/')
|
105 |
+
im_save_path = os.path.join(save_path, 'obj_detection', img_path_split[-3], img_path_split[-2])
|
106 |
+
ps = test_data[k]['image_path'].split('.')[-1]
|
107 |
+
os.makedirs(im_save_path, exist_ok=True)
|
108 |
+
|
109 |
+
height, width = test_data[k]['true_height'], test_data[k]['true_width']
|
110 |
+
final_mask = Image.fromarray(final_mask.cpu().numpy()).convert('L')
|
111 |
+
final_mask = final_mask.resize((height, width), resample=Image.Resampling.NEAREST)
|
112 |
+
final_mask.save(os.path.join(im_save_path, img_path_split[-1].replace(f'.{ps}', '.png')))
|
113 |
+
|
114 |
+
with open(os.path.join(im_save_path, img_path_split[-1].replace(f'.{ps}', '.json')), 'w') as fp:
|
115 |
+
json.dump(instance_labels, fp)
|
prismer/experts/generate_ocrdet.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import os
|
9 |
+
import PIL.Image as Image
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
import clip
|
13 |
+
import pickle as pk
|
14 |
+
try:
|
15 |
+
import ruamel_yaml as yaml
|
16 |
+
except ModuleNotFoundError:
|
17 |
+
import ruamel.yaml as yaml
|
18 |
+
|
19 |
+
from experts.model_bank import load_expert_model
|
20 |
+
from experts.ocr_detection.generate_dataset import Dataset
|
21 |
+
from accelerate import Accelerator
|
22 |
+
from tqdm import tqdm
|
23 |
+
|
24 |
+
|
25 |
+
model, transform = load_expert_model(task='ocr_detection')
|
26 |
+
accelerator = Accelerator(mixed_precision='fp16')
|
27 |
+
pca_clip = pk.load(open('dataset/clip_pca.pkl', 'rb'))
|
28 |
+
|
29 |
+
config = yaml.load(open('configs/experts.yaml', 'r'), Loader=yaml.Loader)
|
30 |
+
data_path = config['data_path']
|
31 |
+
save_path = os.path.join(config['save_path'], 'ocr_detection')
|
32 |
+
|
33 |
+
batch_size = 32
|
34 |
+
dataset = Dataset(data_path, transform)
|
35 |
+
data_loader = torch.utils.data.DataLoader(
|
36 |
+
dataset=dataset,
|
37 |
+
batch_size=batch_size,
|
38 |
+
shuffle=False,
|
39 |
+
num_workers=4,
|
40 |
+
pin_memory=True,
|
41 |
+
)
|
42 |
+
|
43 |
+
clip_model, _ = clip.load("ViT-L/14", device=accelerator.device)
|
44 |
+
model, data_loader = accelerator.prepare(model, data_loader)
|
45 |
+
|
46 |
+
|
47 |
+
def get_label(w, h, word_instances):
|
48 |
+
word_lists = []
|
49 |
+
final_mask = np.ones([h, w], dtype=np.uint8) * 255
|
50 |
+
counter = 0
|
51 |
+
for word_instance in word_instances[::-1]:
|
52 |
+
mask = np.zeros([h ,w])
|
53 |
+
mask = cv2.fillPoly(mask, [np.int32(word_instance.word_bbox.reshape(-1, 2))], 1)
|
54 |
+
text = word_instance.text.lower()
|
55 |
+
final_mask[mask > 0] = counter
|
56 |
+
word_lists.append(text)
|
57 |
+
counter += 1
|
58 |
+
return final_mask, word_lists
|
59 |
+
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
for i, (test_data, image_path, scale_w, scale_h, original_w, original_h) in enumerate(tqdm(data_loader)):
|
63 |
+
word_instance_lists = model(test_data, scale_w, scale_h, original_w, original_h)
|
64 |
+
for k in range(len(word_instance_lists)):
|
65 |
+
word_instance = word_instance_lists[k]
|
66 |
+
if len(word_instance) == 0:
|
67 |
+
continue
|
68 |
+
else:
|
69 |
+
final_mask, word_lists = get_label(original_w[k], original_h[k], word_instance)
|
70 |
+
|
71 |
+
final_mask = Image.fromarray(final_mask)
|
72 |
+
img_path_split = image_path[k].split('/')
|
73 |
+
ps = image_path[k].split('.')[-1]
|
74 |
+
im_save_path = os.path.join(save_path, img_path_split[-3], img_path_split[-2])
|
75 |
+
os.makedirs(im_save_path, exist_ok=True)
|
76 |
+
|
77 |
+
final_mask.save(os.path.join(im_save_path, img_path_split[-1].replace(f'.{ps}', '.png')))
|
78 |
+
|
79 |
+
if len(word_lists) > 0:
|
80 |
+
word_embed = clip.tokenize(word_lists).to(accelerator.device)
|
81 |
+
word_features = pca_clip.transform(clip_model.encode_text(word_embed).float().cpu())
|
82 |
+
word_lists = {j: {'features': torch.from_numpy(word_features[j]).float(),
|
83 |
+
'text': word_lists[j]} for j in range(len(word_lists))}
|
84 |
+
torch.save(word_lists, os.path.join(im_save_path, img_path_split[-1].replace(f'.{ps}', '.pt')))
|
85 |
+
|
86 |
+
|
prismer/experts/generate_segmentation.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import os
|
9 |
+
import PIL.Image as Image
|
10 |
+
try:
|
11 |
+
import ruamel_yaml as yaml
|
12 |
+
except ModuleNotFoundError:
|
13 |
+
import ruamel.yaml as yaml
|
14 |
+
|
15 |
+
from experts.model_bank import load_expert_model
|
16 |
+
from experts.segmentation.generate_dataset import Dataset, collate_fn
|
17 |
+
from accelerate import Accelerator
|
18 |
+
from tqdm import tqdm
|
19 |
+
|
20 |
+
model, transform = load_expert_model(task='seg_coco')
|
21 |
+
accelerator = Accelerator(mixed_precision='fp16')
|
22 |
+
|
23 |
+
config = yaml.load(open('configs/experts.yaml', 'r'), Loader=yaml.Loader)
|
24 |
+
data_path = config['data_path']
|
25 |
+
save_path = os.path.join(config['save_path'], 'seg_coco')
|
26 |
+
|
27 |
+
batch_size = 4
|
28 |
+
dataset = Dataset(data_path, transform)
|
29 |
+
data_loader = torch.utils.data.DataLoader(
|
30 |
+
dataset=dataset,
|
31 |
+
batch_size=batch_size,
|
32 |
+
shuffle=False,
|
33 |
+
num_workers=4,
|
34 |
+
pin_memory=True,
|
35 |
+
collate_fn=collate_fn,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
model, data_loader = accelerator.prepare(model, data_loader)
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
for i, test_data in enumerate(tqdm(data_loader)):
|
43 |
+
test_pred = model(test_data)
|
44 |
+
|
45 |
+
for k in range(len(test_pred)):
|
46 |
+
pred = test_pred[k]['sem_seg']
|
47 |
+
labels = torch.argmax(pred, dim=0)
|
48 |
+
|
49 |
+
img_path_split = test_data[k]['image_path'].split('/')
|
50 |
+
ps = test_data[k]['image_path'].split('.')[-1]
|
51 |
+
im_save_path = os.path.join(save_path, img_path_split[-3], img_path_split[-2])
|
52 |
+
os.makedirs(im_save_path, exist_ok=True)
|
53 |
+
|
54 |
+
seg = Image.fromarray(labels.float().detach().cpu().numpy()).convert('L')
|
55 |
+
seg.save(os.path.join(im_save_path, img_path_split[-1].replace(f'.{ps}', '.png')))
|
56 |
+
|
prismer/experts/model_bank.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
|
10 |
+
|
11 |
+
def load_expert_model(task=None):
|
12 |
+
if task == 'depth':
|
13 |
+
# DPT model is a standard pytorch model class
|
14 |
+
from experts.depth.models import DPTDepthModel
|
15 |
+
|
16 |
+
model = DPTDepthModel(path='experts/expert_weights/dpt_hybrid-midas-501f0c75.pt',
|
17 |
+
backbone="vitb_rn50_384",
|
18 |
+
non_negative=True,
|
19 |
+
enable_attention_hooks=False)
|
20 |
+
transform = transforms.Compose([
|
21 |
+
transforms.Resize([480, 480]),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
transforms.Normalize(mean=0.5, std=0.5)]
|
24 |
+
)
|
25 |
+
|
26 |
+
elif task == 'seg_coco':
|
27 |
+
# Mask2Former is wrapped in detection2,
|
28 |
+
# the model takes input in the format of: {"image": image (BGR), "height": height, "width": width}
|
29 |
+
import argparse
|
30 |
+
from detectron2.engine.defaults import DefaultPredictor
|
31 |
+
from experts.segmentation.utils import setup_cfg
|
32 |
+
|
33 |
+
parser = argparse.ArgumentParser()
|
34 |
+
parser.add_argument("--mode", default="client")
|
35 |
+
parser.add_argument("--port", default=2)
|
36 |
+
args = parser.parse_args()
|
37 |
+
|
38 |
+
args.config_file = 'experts/segmentation/configs/coco/panoptic-segmentation/swin/maskformer2_swin_large_IN21k_384_bs16_100ep.yaml'
|
39 |
+
args.opts = ['MODEL.WEIGHTS', 'experts/expert_weights/model_final_f07440.pkl']
|
40 |
+
cfg = setup_cfg(args)
|
41 |
+
model = DefaultPredictor(cfg).model
|
42 |
+
transform = transforms.Compose([
|
43 |
+
transforms.Resize(size=479, max_size=480)
|
44 |
+
])
|
45 |
+
|
46 |
+
elif task == 'seg_ade':
|
47 |
+
# Mask2Former is wrapped in detection2,
|
48 |
+
# the model takes input in the format of: {"image": image (BGR), "height": height, "width": width}
|
49 |
+
import argparse
|
50 |
+
from detectron2.engine.defaults import DefaultPredictor
|
51 |
+
from experts.segmentation.utils import setup_cfg
|
52 |
+
|
53 |
+
parser = argparse.ArgumentParser()
|
54 |
+
parser.add_argument("--mode", default="client")
|
55 |
+
parser.add_argument("--port", default=2)
|
56 |
+
args = parser.parse_args()
|
57 |
+
|
58 |
+
args.config_file = 'experts/segmentation/configs/ade20k/panoptic-segmentation/swin/maskformer2_swin_large_IN21k_384_bs16_160k.yaml'
|
59 |
+
args.opts = ['MODEL.WEIGHTS', 'experts/expert_weights/model_final_e0c58e.pkl']
|
60 |
+
cfg = setup_cfg(args)
|
61 |
+
model = DefaultPredictor(cfg).model
|
62 |
+
transform = transforms.Compose([
|
63 |
+
transforms.Resize(size=479, max_size=480)
|
64 |
+
])
|
65 |
+
|
66 |
+
elif task == 'obj_detection':
|
67 |
+
# UniDet is wrapped in detection2,
|
68 |
+
# the model takes input in the format of: {"image": image (BGR), "height": height, "width": width}
|
69 |
+
import argparse
|
70 |
+
from detectron2.engine.defaults import DefaultPredictor
|
71 |
+
from experts.obj_detection.utils import setup_cfg
|
72 |
+
parser = argparse.ArgumentParser()
|
73 |
+
parser.add_argument("--mode", default="client")
|
74 |
+
parser.add_argument("--port", default=2)
|
75 |
+
parser.add_argument("--confidence-threshold", type=float, default=0.5)
|
76 |
+
args = parser.parse_args()
|
77 |
+
|
78 |
+
args.config_file = 'experts/obj_detection/configs/Unified_learned_OCIM_RS200_6x+2x.yaml'
|
79 |
+
args.opts = ['MODEL.WEIGHTS', 'experts/expert_weights/Unified_learned_OCIM_RS200_6x+2x.pth']
|
80 |
+
|
81 |
+
cfg = setup_cfg(args)
|
82 |
+
model = DefaultPredictor(cfg).model
|
83 |
+
transform = transforms.Compose([
|
84 |
+
transforms.Resize(size=479, max_size=480)
|
85 |
+
])
|
86 |
+
|
87 |
+
elif task == 'ocr_detection':
|
88 |
+
from experts.ocr_detection.charnet.modeling.model import CharNet
|
89 |
+
model = CharNet()
|
90 |
+
model.load_state_dict(torch.load('experts/expert_weights/icdar2015_hourglass88.pth'))
|
91 |
+
transform = transforms.Compose([
|
92 |
+
transforms.ToTensor(),
|
93 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
94 |
+
])
|
95 |
+
|
96 |
+
elif task == 'normal':
|
97 |
+
# NLL-AngMF model is a standard pytorch model class
|
98 |
+
import argparse
|
99 |
+
from experts.normal.models.NNET import NNET
|
100 |
+
from experts.normal.utils import utils
|
101 |
+
|
102 |
+
parser = argparse.ArgumentParser()
|
103 |
+
parser.add_argument("--mode", default="client")
|
104 |
+
parser.add_argument("--port", default=2)
|
105 |
+
parser.add_argument('--architecture', default='BN', type=str, help='{BN, GN}')
|
106 |
+
parser.add_argument("--pretrained", default='scannet', type=str, help="{nyu, scannet}")
|
107 |
+
parser.add_argument('--sampling_ratio', type=float, default=0.4)
|
108 |
+
parser.add_argument('--importance_ratio', type=float, default=0.7)
|
109 |
+
args = parser.parse_args()
|
110 |
+
model = NNET(args)
|
111 |
+
model = utils.load_checkpoint('experts/expert_weights/scannet.pt', model)
|
112 |
+
|
113 |
+
transform = transforms.Compose([
|
114 |
+
transforms.Resize([480, 480]),
|
115 |
+
transforms.ToTensor(),
|
116 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
117 |
+
])
|
118 |
+
|
119 |
+
elif task == 'edge':
|
120 |
+
# NLL-AngMF model is a standard pytorch model class
|
121 |
+
from experts.edge.model import DexiNed
|
122 |
+
model = DexiNed()
|
123 |
+
model.load_state_dict(torch.load('experts/expert_weights/10_model.pth', map_location='cpu'))
|
124 |
+
transform = transforms.Compose([
|
125 |
+
transforms.Resize([480, 480]),
|
126 |
+
transforms.ToTensor(),
|
127 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[1.0, 1.0, 1.0])
|
128 |
+
])
|
129 |
+
else:
|
130 |
+
print('Task not supported')
|
131 |
+
model = None
|
132 |
+
transform = None
|
133 |
+
|
134 |
+
model.eval()
|
135 |
+
return model, transform
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
prismer/experts/normal/generate_dataset.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA Corporation & Affiliates. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
# To view a copy of this license, visit
|
5 |
+
# https://github.com/NVlabs/prismer/blob/main/LICENSE
|
6 |
+
|
7 |
+
import glob
|
8 |
+
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
from PIL import Image
|
11 |
+
from PIL import ImageFile
|
12 |
+
|
13 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
14 |
+
|
15 |
+
|
16 |
+
class CustomDataset(Dataset):
|
17 |
+
def __init__(self, data_path, transform):
|
18 |
+
self.data_path = data_path
|
19 |
+
self.transform = transform
|
20 |
+
data_folders = glob.glob(f'{data_path}/*/')
|
21 |
+
self.data_list = [data for f in data_folders for data in glob.glob(f + '*.JPEG')]
|
22 |
+
self.data_list += [data for f in data_folders for data in glob.glob(f + '*.jpg')]
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.data_list)
|
26 |
+
|
27 |
+
def __getitem__(self, index):
|
28 |
+
image_path = self.data_list[index]
|
29 |
+
image = Image.open(image_path).convert('RGB')
|
30 |
+
img_size = [image.size[0], image.size[1]]
|
31 |
+
image = self.transform(image)
|
32 |
+
return image, image_path, img_size
|
33 |
+
|
34 |
+
|
prismer/experts/normal/models/NNET.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from experts.normal.models.submodules.encoder import Encoder
|
6 |
+
from experts.normal.models.submodules.decoder import Decoder
|
7 |
+
|
8 |
+
|
9 |
+
class NNET(nn.Module):
|
10 |
+
def __init__(self, args):
|
11 |
+
super(NNET, self).__init__()
|
12 |
+
self.encoder = Encoder()
|
13 |
+
self.decoder = Decoder(args)
|
14 |
+
|
15 |
+
def get_1x_lr_params(self): # lr/10 learning rate
|
16 |
+
return self.encoder.parameters()
|
17 |
+
|
18 |
+
def get_10x_lr_params(self): # lr learning rate
|
19 |
+
return self.decoder.parameters()
|
20 |
+
|
21 |
+
def forward(self, img, **kwargs):
|
22 |
+
return self.decoder(self.encoder(img), **kwargs)
|
prismer/experts/normal/models/baseline.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from experts.normal.models.submodules.submodules import UpSampleBN, norm_normalize
|
6 |
+
|
7 |
+
|
8 |
+
# This is the baseline encoder-decoder we used in the ablation study
|
9 |
+
class NNET(nn.Module):
|
10 |
+
def __init__(self, args=None):
|
11 |
+
super(NNET, self).__init__()
|
12 |
+
self.encoder = Encoder()
|
13 |
+
self.decoder = Decoder(num_classes=4)
|
14 |
+
|
15 |
+
def forward(self, x, **kwargs):
|
16 |
+
out = self.decoder(self.encoder(x), **kwargs)
|
17 |
+
|
18 |
+
# Bilinearly upsample the output to match the input resolution
|
19 |
+
up_out = F.interpolate(out, size=[x.size(2), x.size(3)], mode='bilinear', align_corners=False)
|
20 |
+
|
21 |
+
# L2-normalize the first three channels / ensure positive value for concentration parameters (kappa)
|
22 |
+
up_out = norm_normalize(up_out)
|
23 |
+
return up_out
|
24 |
+
|
25 |
+
def get_1x_lr_params(self): # lr/10 learning rate
|
26 |
+
return self.encoder.parameters()
|
27 |
+
|
28 |
+
def get_10x_lr_params(self): # lr learning rate
|
29 |
+
modules = [self.decoder]
|
30 |
+
for m in modules:
|
31 |
+
yield from m.parameters()
|
32 |
+
|
33 |
+
|
34 |
+
# Encoder
|
35 |
+
class Encoder(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super(Encoder, self).__init__()
|
38 |
+
|
39 |
+
basemodel_name = 'tf_efficientnet_b5_ap'
|
40 |
+
basemodel = torch.hub.load('rwightman/gen-efficientnet-pytorch', basemodel_name, pretrained=True)
|
41 |
+
|
42 |
+
# Remove last layer
|
43 |
+
basemodel.global_pool = nn.Identity()
|
44 |
+
basemodel.classifier = nn.Identity()
|
45 |
+
|
46 |
+
self.original_model = basemodel
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
features = [x]
|
50 |
+
for k, v in self.original_model._modules.items():
|
51 |
+
if (k == 'blocks'):
|
52 |
+
for ki, vi in v._modules.items():
|
53 |
+
features.append(vi(features[-1]))
|
54 |
+
else:
|
55 |
+
features.append(v(features[-1]))
|
56 |
+
return features
|
57 |
+
|
58 |
+
|
59 |
+
# Decoder (no pixel-wise MLP, no uncertainty-guided sampling)
|
60 |
+
class Decoder(nn.Module):
|
61 |
+
def __init__(self, num_classes=4):
|
62 |
+
super(Decoder, self).__init__()
|
63 |
+
self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
|
64 |
+
self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
|
65 |
+
self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
|
66 |
+
self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
|
67 |
+
self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
|
68 |
+
self.conv3 = nn.Conv2d(128, num_classes, kernel_size=3, stride=1, padding=1)
|
69 |
+
|
70 |
+
def forward(self, features):
|
71 |
+
x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
|
72 |
+
x_d0 = self.conv2(x_block4)
|
73 |
+
x_d1 = self.up1(x_d0, x_block3)
|
74 |
+
x_d2 = self.up2(x_d1, x_block2)
|
75 |
+
x_d3 = self.up3(x_d2, x_block1)
|
76 |
+
x_d4 = self.up4(x_d3, x_block0)
|
77 |
+
out = self.conv3(x_d4)
|
78 |
+
return out
|
79 |
+
|
80 |
+
|
81 |
+
if __name__ == '__main__':
|
82 |
+
model = Baseline()
|
83 |
+
x = torch.rand(2, 3, 480, 640)
|
84 |
+
out = model(x)
|
85 |
+
print(out.shape)
|
prismer/experts/normal/models/submodules/decoder.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from experts.normal.models.submodules.submodules import UpSampleBN, UpSampleGN, norm_normalize, sample_points
|
5 |
+
|
6 |
+
|
7 |
+
class Decoder(nn.Module):
|
8 |
+
def __init__(self, args):
|
9 |
+
super(Decoder, self).__init__()
|
10 |
+
|
11 |
+
# hyper-parameter for sampling
|
12 |
+
self.sampling_ratio = args.sampling_ratio
|
13 |
+
self.importance_ratio = args.importance_ratio
|
14 |
+
|
15 |
+
# feature-map
|
16 |
+
self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
|
17 |
+
if args.architecture == 'BN':
|
18 |
+
self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
|
19 |
+
self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
|
20 |
+
self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
|
21 |
+
self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
|
22 |
+
|
23 |
+
elif args.architecture == 'GN':
|
24 |
+
self.up1 = UpSampleGN(skip_input=2048 + 176, output_features=1024)
|
25 |
+
self.up2 = UpSampleGN(skip_input=1024 + 64, output_features=512)
|
26 |
+
self.up3 = UpSampleGN(skip_input=512 + 40, output_features=256)
|
27 |
+
self.up4 = UpSampleGN(skip_input=256 + 24, output_features=128)
|
28 |
+
|
29 |
+
else:
|
30 |
+
raise Exception('invalid architecture')
|
31 |
+
|
32 |
+
# produces 1/8 res output
|
33 |
+
self.out_conv_res8 = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
|
34 |
+
|
35 |
+
# produces 1/4 res output
|
36 |
+
self.out_conv_res4 = nn.Sequential(
|
37 |
+
nn.Conv1d(512 + 4, 128, kernel_size=1), nn.ReLU(),
|
38 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
39 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
40 |
+
nn.Conv1d(128, 4, kernel_size=1),
|
41 |
+
)
|
42 |
+
|
43 |
+
# produces 1/2 res output
|
44 |
+
self.out_conv_res2 = nn.Sequential(
|
45 |
+
nn.Conv1d(256 + 4, 128, kernel_size=1), nn.ReLU(),
|
46 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
47 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
48 |
+
nn.Conv1d(128, 4, kernel_size=1),
|
49 |
+
)
|
50 |
+
|
51 |
+
# produces 1/1 res output
|
52 |
+
self.out_conv_res1 = nn.Sequential(
|
53 |
+
nn.Conv1d(128 + 4, 128, kernel_size=1), nn.ReLU(),
|
54 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
55 |
+
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
|
56 |
+
nn.Conv1d(128, 4, kernel_size=1),
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(self, features, gt_norm_mask=None, mode='test'):
|
60 |
+
x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
|
61 |
+
|
62 |
+
# generate feature-map
|
63 |
+
|
64 |
+
x_d0 = self.conv2(x_block4) # x_d0 : [2, 2048, 15, 20] 1/32 res
|
65 |
+
x_d1 = self.up1(x_d0, x_block3) # x_d1 : [2, 1024, 30, 40] 1/16 res
|
66 |
+
x_d2 = self.up2(x_d1, x_block2) # x_d2 : [2, 512, 60, 80] 1/8 res
|
67 |
+
x_d3 = self.up3(x_d2, x_block1) # x_d3: [2, 256, 120, 160] 1/4 res
|
68 |
+
x_d4 = self.up4(x_d3, x_block0) # x_d4: [2, 128, 240, 320] 1/2 res
|
69 |
+
|
70 |
+
# 1/8 res output
|
71 |
+
out_res8 = self.out_conv_res8(x_d2) # out_res8: [2, 4, 60, 80] 1/8 res output
|
72 |
+
out_res8 = norm_normalize(out_res8) # out_res8: [2, 4, 60, 80] 1/8 res output
|
73 |
+
|
74 |
+
################################################################################################################
|
75 |
+
# out_res4
|
76 |
+
################################################################################################################
|
77 |
+
|
78 |
+
if mode == 'train':
|
79 |
+
# upsampling ... out_res8: [2, 4, 60, 80] -> out_res8_res4: [2, 4, 120, 160]
|
80 |
+
out_res8_res4 = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
|
81 |
+
B, _, H, W = out_res8_res4.shape
|
82 |
+
|
83 |
+
# samples: [B, 1, N, 2]
|
84 |
+
point_coords_res4, rows_int, cols_int = sample_points(out_res8_res4.detach(), gt_norm_mask,
|
85 |
+
sampling_ratio=self.sampling_ratio,
|
86 |
+
beta=self.importance_ratio)
|
87 |
+
|
88 |
+
# output (needed for evaluation / visualization)
|
89 |
+
out_res4 = out_res8_res4
|
90 |
+
|
91 |
+
# grid_sample feature-map
|
92 |
+
feat_res4 = F.grid_sample(x_d2, point_coords_res4, mode='bilinear', align_corners=True) # (B, 512, 1, N)
|
93 |
+
init_pred = F.grid_sample(out_res8, point_coords_res4, mode='bilinear', align_corners=True) # (B, 4, 1, N)
|
94 |
+
feat_res4 = torch.cat([feat_res4, init_pred], dim=1) # (B, 512+4, 1, N)
|
95 |
+
|
96 |
+
# prediction (needed to compute loss)
|
97 |
+
samples_pred_res4 = self.out_conv_res4(feat_res4[:, :, 0, :]) # (B, 4, N)
|
98 |
+
samples_pred_res4 = norm_normalize(samples_pred_res4) # (B, 4, N) - normalized
|
99 |
+
|
100 |
+
for i in range(B):
|
101 |
+
out_res4[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res4[i, :, :]
|
102 |
+
|
103 |
+
else:
|
104 |
+
# grid_sample feature-map
|
105 |
+
feat_map = F.interpolate(x_d2, scale_factor=2, mode='bilinear', align_corners=True)
|
106 |
+
init_pred = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
|
107 |
+
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
|
108 |
+
B, _, H, W = feat_map.shape
|
109 |
+
|
110 |
+
# try all pixels
|
111 |
+
out_res4 = self.out_conv_res4(feat_map.view(B, 512 + 4, -1)) # (B, 4, N)
|
112 |
+
out_res4 = norm_normalize(out_res4) # (B, 4, N) - normalized
|
113 |
+
out_res4 = out_res4.view(B, 4, H, W)
|
114 |
+
samples_pred_res4 = point_coords_res4 = None
|
115 |
+
|
116 |
+
################################################################################################################
|
117 |
+
# out_res2
|
118 |
+
################################################################################################################
|
119 |
+
|
120 |
+
if mode == 'train':
|
121 |
+
|
122 |
+
# upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
|
123 |
+
out_res4_res2 = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
|
124 |
+
B, _, H, W = out_res4_res2.shape
|
125 |
+
|
126 |
+
# samples: [B, 1, N, 2]
|
127 |
+
point_coords_res2, rows_int, cols_int = sample_points(out_res4_res2.detach(), gt_norm_mask,
|
128 |
+
sampling_ratio=self.sampling_ratio,
|
129 |
+
beta=self.importance_ratio)
|
130 |
+
|
131 |
+
# output (needed for evaluation / visualization)
|
132 |
+
out_res2 = out_res4_res2
|
133 |
+
|
134 |
+
# grid_sample feature-map
|
135 |
+
feat_res2 = F.grid_sample(x_d3, point_coords_res2, mode='bilinear', align_corners=True) # (B, 256, 1, N)
|
136 |
+
init_pred = F.grid_sample(out_res4, point_coords_res2, mode='bilinear', align_corners=True) # (B, 4, 1, N)
|
137 |
+
feat_res2 = torch.cat([feat_res2, init_pred], dim=1) # (B, 256+4, 1, N)
|
138 |
+
|
139 |
+
# prediction (needed to compute loss)
|
140 |
+
samples_pred_res2 = self.out_conv_res2(feat_res2[:, :, 0, :]) # (B, 4, N)
|
141 |
+
samples_pred_res2 = norm_normalize(samples_pred_res2) # (B, 4, N) - normalized
|
142 |
+
|
143 |
+
for i in range(B):
|
144 |
+
out_res2[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res2[i, :, :]
|
145 |
+
|
146 |
+
else:
|
147 |
+
# grid_sample feature-map
|
148 |
+
feat_map = F.interpolate(x_d3, scale_factor=2, mode='bilinear', align_corners=True)
|
149 |
+
init_pred = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
|
150 |
+
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
|
151 |
+
B, _, H, W = feat_map.shape
|
152 |
+
|
153 |
+
out_res2 = self.out_conv_res2(feat_map.view(B, 256 + 4, -1)) # (B, 4, N)
|
154 |
+
out_res2 = norm_normalize(out_res2) # (B, 4, N) - normalized
|
155 |
+
out_res2 = out_res2.view(B, 4, H, W)
|
156 |
+
samples_pred_res2 = point_coords_res2 = None
|
157 |
+
|
158 |
+
################################################################################################################
|
159 |
+
# out_res1
|
160 |
+
################################################################################################################
|
161 |
+
|
162 |
+
if mode == 'train':
|
163 |
+
# upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
|
164 |
+
out_res2_res1 = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
|
165 |
+
B, _, H, W = out_res2_res1.shape
|
166 |
+
|
167 |
+
# samples: [B, 1, N, 2]
|
168 |
+
point_coords_res1, rows_int, cols_int = sample_points(out_res2_res1.detach(), gt_norm_mask,
|
169 |
+
sampling_ratio=self.sampling_ratio,
|
170 |
+
beta=self.importance_ratio)
|
171 |
+
|
172 |
+
# output (needed for evaluation / visualization)
|
173 |
+
out_res1 = out_res2_res1
|
174 |
+
|
175 |
+
# grid_sample feature-map
|
176 |
+
feat_res1 = F.grid_sample(x_d4, point_coords_res1, mode='bilinear', align_corners=True) # (B, 128, 1, N)
|
177 |
+
init_pred = F.grid_sample(out_res2, point_coords_res1, mode='bilinear', align_corners=True) # (B, 4, 1, N)
|
178 |
+
feat_res1 = torch.cat([feat_res1, init_pred], dim=1) # (B, 128+4, 1, N)
|
179 |
+
|
180 |
+
# prediction (needed to compute loss)
|
181 |
+
samples_pred_res1 = self.out_conv_res1(feat_res1[:, :, 0, :]) # (B, 4, N)
|
182 |
+
samples_pred_res1 = norm_normalize(samples_pred_res1) # (B, 4, N) - normalized
|
183 |
+
|
184 |
+
for i in range(B):
|
185 |
+
out_res1[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res1[i, :, :]
|
186 |
+
|
187 |
+
else:
|
188 |
+
# grid_sample feature-map
|
189 |
+
feat_map = F.interpolate(x_d4, scale_factor=2, mode='bilinear', align_corners=True)
|
190 |
+
init_pred = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
|
191 |
+
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
|
192 |
+
B, _, H, W = feat_map.shape
|
193 |
+
|
194 |
+
out_res1 = self.out_conv_res1(feat_map.view(B, 128 + 4, -1)) # (B, 4, N)
|
195 |
+
out_res1 = norm_normalize(out_res1) # (B, 4, N) - normalized
|
196 |
+
out_res1 = out_res1.view(B, 4, H, W)
|
197 |
+
samples_pred_res1 = point_coords_res1 = None
|
198 |
+
|
199 |
+
return [out_res8, out_res4, out_res2, out_res1], \
|
200 |
+
[out_res8, samples_pred_res4, samples_pred_res2, samples_pred_res1], \
|
201 |
+
[None, point_coords_res4, point_coords_res2, point_coords_res1]
|
202 |
+
|
prismer/experts/normal/models/submodules/encoder.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class Encoder(nn.Module):
|
7 |
+
def __init__(self):
|
8 |
+
super(Encoder, self).__init__()
|
9 |
+
|
10 |
+
basemodel_name = 'tf_efficientnet_b5_ap'
|
11 |
+
print('Loading base model ()...'.format(basemodel_name), end='')
|
12 |
+
basemodel = torch.hub.load('rwightman/gen-efficientnet-pytorch', basemodel_name, pretrained=True)
|
13 |
+
print('Done.')
|
14 |
+
|
15 |
+
# Remove last layer
|
16 |
+
print('Removing last two layers (global_pool & classifier).')
|
17 |
+
basemodel.global_pool = nn.Identity()
|
18 |
+
basemodel.classifier = nn.Identity()
|
19 |
+
|
20 |
+
self.original_model = basemodel
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
features = [x]
|
24 |
+
for k, v in self.original_model._modules.items():
|
25 |
+
if (k == 'blocks'):
|
26 |
+
for ki, vi in v._modules.items():
|
27 |
+
features.append(vi(features[-1]))
|
28 |
+
else:
|
29 |
+
features.append(v(features[-1]))
|
30 |
+
return features
|
31 |
+
|
32 |
+
|
prismer/experts/normal/models/submodules/submodules.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
########################################################################################################################
|
7 |
+
|
8 |
+
|
9 |
+
# Upsample + BatchNorm
|
10 |
+
class UpSampleBN(nn.Module):
|
11 |
+
def __init__(self, skip_input, output_features):
|
12 |
+
super(UpSampleBN, self).__init__()
|
13 |
+
|
14 |
+
self._net = nn.Sequential(nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
|
15 |
+
nn.BatchNorm2d(output_features),
|
16 |
+
nn.LeakyReLU(),
|
17 |
+
nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1),
|
18 |
+
nn.BatchNorm2d(output_features),
|
19 |
+
nn.LeakyReLU())
|
20 |
+
|
21 |
+
def forward(self, x, concat_with):
|
22 |
+
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
|
23 |
+
f = torch.cat([up_x, concat_with], dim=1)
|
24 |
+
return self._net(f)
|
25 |
+
|
26 |
+
|
27 |
+
# Upsample + GroupNorm + Weight Standardization
|
28 |
+
class UpSampleGN(nn.Module):
|
29 |
+
def __init__(self, skip_input, output_features):
|
30 |
+
super(UpSampleGN, self).__init__()
|
31 |
+
|
32 |
+
self._net = nn.Sequential(Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
|
33 |
+
nn.GroupNorm(8, output_features),
|
34 |
+
nn.LeakyReLU(),
|
35 |
+
Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1),
|
36 |
+
nn.GroupNorm(8, output_features),
|
37 |
+
nn.LeakyReLU())
|
38 |
+
|
39 |
+
def forward(self, x, concat_with):
|
40 |
+
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
|
41 |
+
f = torch.cat([up_x, concat_with], dim=1)
|
42 |
+
return self._net(f)
|
43 |
+
|
44 |
+
|
45 |
+
# Conv2d with weight standardization
|
46 |
+
class Conv2d(nn.Conv2d):
|
47 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
48 |
+
padding=0, dilation=1, groups=1, bias=True):
|
49 |
+
super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
|
50 |
+
padding, dilation, groups, bias)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
weight = self.weight
|
54 |
+
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
|
55 |
+
keepdim=True).mean(dim=3, keepdim=True)
|
56 |
+
weight = weight - weight_mean
|
57 |
+
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
|
58 |
+
weight = weight / std.expand_as(weight)
|
59 |
+
return F.conv2d(x, weight, self.bias, self.stride,
|
60 |
+
self.padding, self.dilation, self.groups)
|
61 |
+
|
62 |
+
|
63 |
+
# normalize
|
64 |
+
def norm_normalize(norm_out):
|
65 |
+
min_kappa = 0.01
|
66 |
+
norm_x, norm_y, norm_z, kappa = torch.split(norm_out, 1, dim=1)
|
67 |
+
norm = torch.sqrt(norm_x ** 2.0 + norm_y ** 2.0 + norm_z ** 2.0) + 1e-10
|
68 |
+
kappa = F.elu(kappa) + 1.0 + min_kappa
|
69 |
+
final_out = torch.cat([norm_x / norm, norm_y / norm, norm_z / norm, kappa], dim=1)
|
70 |
+
return final_out
|
71 |
+
|
72 |
+
|
73 |
+
# uncertainty-guided sampling (only used during training)
|
74 |
+
@torch.no_grad()
|
75 |
+
def sample_points(init_normal, gt_norm_mask, sampling_ratio, beta):
|
76 |
+
device = init_normal.device
|
77 |
+
B, _, H, W = init_normal.shape
|
78 |
+
N = int(sampling_ratio * H * W)
|
79 |
+
beta = beta
|
80 |
+
|
81 |
+
# uncertainty map
|
82 |
+
uncertainty_map = -1 * init_normal[:, 3, :, :] # B, H, W
|
83 |
+
|
84 |
+
# gt_invalid_mask (B, H, W)
|
85 |
+
if gt_norm_mask is not None:
|
86 |
+
gt_invalid_mask = F.interpolate(gt_norm_mask.float(), size=[H, W], mode='nearest')
|
87 |
+
gt_invalid_mask = gt_invalid_mask[:, 0, :, :] < 0.5
|
88 |
+
uncertainty_map[gt_invalid_mask] = -1e4
|
89 |
+
|
90 |
+
# (B, H*W)
|
91 |
+
_, idx = uncertainty_map.view(B, -1).sort(1, descending=True)
|
92 |
+
|
93 |
+
# importance sampling
|
94 |
+
if int(beta * N) > 0:
|
95 |
+
importance = idx[:, :int(beta * N)] # B, beta*N
|
96 |
+
|
97 |
+
# remaining
|
98 |
+
remaining = idx[:, int(beta * N):] # B, H*W - beta*N
|
99 |
+
|
100 |
+
# coverage
|
101 |
+
num_coverage = N - int(beta * N)
|
102 |
+
|
103 |
+
if num_coverage <= 0:
|
104 |
+
samples = importance
|
105 |
+
else:
|
106 |
+
coverage_list = []
|
107 |
+
for i in range(B):
|
108 |
+
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
|
109 |
+
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
|
110 |
+
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
|
111 |
+
samples = torch.cat((importance, coverage), dim=1) # B, N
|
112 |
+
|
113 |
+
else:
|
114 |
+
# remaining
|
115 |
+
remaining = idx[:, :] # B, H*W
|
116 |
+
|
117 |
+
# coverage
|
118 |
+
num_coverage = N
|
119 |
+
|
120 |
+
coverage_list = []
|
121 |
+
for i in range(B):
|
122 |
+
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
|
123 |
+
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
|
124 |
+
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
|
125 |
+
samples = coverage
|
126 |
+
|
127 |
+
# point coordinates
|
128 |
+
rows_int = samples // W # 0 for first row, H-1 for last row
|
129 |
+
rows_float = rows_int / float(H-1) # 0 to 1.0
|
130 |
+
rows_float = (rows_float * 2.0) - 1.0 # -1.0 to 1.0
|
131 |
+
|
132 |
+
cols_int = samples % W # 0 for first column, W-1 for last column
|
133 |
+
cols_float = cols_int / float(W-1) # 0 to 1.0
|
134 |
+
cols_float = (cols_float * 2.0) - 1.0 # -1.0 to 1.0
|
135 |
+
|
136 |
+
point_coords = torch.zeros(B, 1, N, 2)
|
137 |
+
point_coords[:, 0, :, 0] = cols_float # x coord
|
138 |
+
point_coords[:, 0, :, 1] = rows_float # y coord
|
139 |
+
point_coords = point_coords.to(device)
|
140 |
+
return point_coords, rows_int, cols_int
|
prismer/experts/normal/utils/losses.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
# compute loss
|
8 |
+
class compute_loss(nn.Module):
|
9 |
+
def __init__(self, args):
|
10 |
+
"""args.loss_fn can be one of following:
|
11 |
+
- L1 - L1 loss (no uncertainty)
|
12 |
+
- L2 - L2 loss (no uncertainty)
|
13 |
+
- AL - Angular loss (no uncertainty)
|
14 |
+
- NLL_vMF - NLL of vonMF distribution
|
15 |
+
- NLL_ours - NLL of Angular vonMF distribution
|
16 |
+
- UG_NLL_vMF - NLL of vonMF distribution (+ pixel-wise MLP + uncertainty-guided sampling)
|
17 |
+
- UG_NLL_ours - NLL of Angular vonMF distribution (+ pixel-wise MLP + uncertainty-guided sampling)
|
18 |
+
"""
|
19 |
+
super(compute_loss, self).__init__()
|
20 |
+
self.loss_type = args.loss_fn
|
21 |
+
if self.loss_type in ['L1', 'L2', 'AL', 'NLL_vMF', 'NLL_ours']:
|
22 |
+
self.loss_fn = self.forward_R
|
23 |
+
elif self.loss_type in ['UG_NLL_vMF', 'UG_NLL_ours']:
|
24 |
+
self.loss_fn = self.forward_UG
|
25 |
+
else:
|
26 |
+
raise Exception('invalid loss type')
|
27 |
+
|
28 |
+
def forward(self, *args):
|
29 |
+
return self.loss_fn(*args)
|
30 |
+
|
31 |
+
def forward_R(self, norm_out, gt_norm, gt_norm_mask):
|
32 |
+
pred_norm, pred_kappa = norm_out[:, 0:3, :, :], norm_out[:, 3:, :, :]
|
33 |
+
|
34 |
+
if self.loss_type == 'L1':
|
35 |
+
l1 = torch.sum(torch.abs(gt_norm - pred_norm), dim=1, keepdim=True)
|
36 |
+
loss = torch.mean(l1[gt_norm_mask])
|
37 |
+
|
38 |
+
elif self.loss_type == 'L2':
|
39 |
+
l2 = torch.sum(torch.square(gt_norm - pred_norm), dim=1, keepdim=True)
|
40 |
+
loss = torch.mean(l2[gt_norm_mask])
|
41 |
+
|
42 |
+
elif self.loss_type == 'AL':
|
43 |
+
dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)
|
44 |
+
|
45 |
+
valid_mask = gt_norm_mask[:, 0, :, :].float() \
|
46 |
+
* (dot.detach() < 0.999).float() \
|
47 |
+
* (dot.detach() > -0.999).float()
|
48 |
+
valid_mask = valid_mask > 0.0
|
49 |
+
|
50 |
+
al = torch.acos(dot[valid_mask])
|
51 |
+
loss = torch.mean(al)
|
52 |
+
|
53 |
+
elif self.loss_type == 'NLL_vMF':
|
54 |
+
dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)
|
55 |
+
|
56 |
+
valid_mask = gt_norm_mask[:, 0, :, :].float() \
|
57 |
+
* (dot.detach() < 0.999).float() \
|
58 |
+
* (dot.detach() > -0.999).float()
|
59 |
+
valid_mask = valid_mask > 0.0
|
60 |
+
|
61 |
+
dot = dot[valid_mask]
|
62 |
+
kappa = pred_kappa[:, 0, :, :][valid_mask]
|
63 |
+
|
64 |
+
loss_pixelwise = - torch.log(kappa) \
|
65 |
+
- (kappa * (dot - 1)) \
|
66 |
+
+ torch.log(1 - torch.exp(- 2 * kappa))
|
67 |
+
loss = torch.mean(loss_pixelwise)
|
68 |
+
|
69 |
+
elif self.loss_type == 'NLL_ours':
|
70 |
+
dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)
|
71 |
+
|
72 |
+
valid_mask = gt_norm_mask[:, 0, :, :].float() \
|
73 |
+
* (dot.detach() < 0.999).float() \
|
74 |
+
* (dot.detach() > -0.999).float()
|
75 |
+
valid_mask = valid_mask > 0.0
|
76 |
+
|
77 |
+
dot = dot[valid_mask]
|
78 |
+
kappa = pred_kappa[:, 0, :, :][valid_mask]
|
79 |
+
|
80 |
+
loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
|
81 |
+
+ kappa * torch.acos(dot) \
|
82 |
+
+ torch.log(1 + torch.exp(-kappa * np.pi))
|
83 |
+
loss = torch.mean(loss_pixelwise)
|
84 |
+
|
85 |
+
else:
|
86 |
+
raise Exception('invalid loss type')
|
87 |
+
|
88 |
+
return loss
|
89 |
+
|
90 |
+
|
91 |
+
def forward_UG(self, pred_list, coord_list, gt_norm, gt_norm_mask):
|
92 |
+
loss = 0.0
|
93 |
+
for (pred, coord) in zip(pred_list, coord_list):
|
94 |
+
if coord is None:
|
95 |
+
pred = F.interpolate(pred, size=[gt_norm.size(2), gt_norm.size(3)], mode='bilinear', align_corners=True)
|
96 |
+
pred_norm, pred_kappa = pred[:, 0:3, :, :], pred[:, 3:, :, :]
|
97 |
+
|
98 |
+
if self.loss_type == 'UG_NLL_vMF':
|
99 |
+
dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)
|
100 |
+
|
101 |
+
valid_mask = gt_norm_mask[:, 0, :, :].float() \
|
102 |
+
* (dot.detach() < 0.999).float() \
|
103 |
+
* (dot.detach() > -0.999).float()
|
104 |
+
valid_mask = valid_mask > 0.5
|
105 |
+
|
106 |
+
# mask
|
107 |
+
dot = dot[valid_mask]
|
108 |
+
kappa = pred_kappa[:, 0, :, :][valid_mask]
|
109 |
+
|
110 |
+
loss_pixelwise = - torch.log(kappa) \
|
111 |
+
- (kappa * (dot - 1)) \
|
112 |
+
+ torch.log(1 - torch.exp(- 2 * kappa))
|
113 |
+
loss = loss + torch.mean(loss_pixelwise)
|
114 |
+
|
115 |
+
elif self.loss_type == 'UG_NLL_ours':
|
116 |
+
dot = torch.cosine_similarity(pred_norm, gt_norm, dim=1)
|
117 |
+
|
118 |
+
valid_mask = gt_norm_mask[:, 0, :, :].float() \
|
119 |
+
* (dot.detach() < 0.999).float() \
|
120 |
+
* (dot.detach() > -0.999).float()
|
121 |
+
valid_mask = valid_mask > 0.5
|
122 |
+
|
123 |
+
dot = dot[valid_mask]
|
124 |
+
kappa = pred_kappa[:, 0, :, :][valid_mask]
|
125 |
+
|
126 |
+
loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
|
127 |
+
+ kappa * torch.acos(dot) \
|
128 |
+
+ torch.log(1 + torch.exp(-kappa * np.pi))
|
129 |
+
loss = loss + torch.mean(loss_pixelwise)
|
130 |
+
|
131 |
+
else:
|
132 |
+
raise Exception
|
133 |
+
|
134 |
+
else:
|
135 |
+
# coord: B, 1, N, 2
|
136 |
+
# pred: B, 4, N
|
137 |
+
gt_norm_ = F.grid_sample(gt_norm, coord, mode='nearest', align_corners=True) # (B, 3, 1, N)
|
138 |
+
gt_norm_mask_ = F.grid_sample(gt_norm_mask.float(), coord, mode='nearest', align_corners=True) # (B, 1, 1, N)
|
139 |
+
gt_norm_ = gt_norm_[:, :, 0, :] # (B, 3, N)
|
140 |
+
gt_norm_mask_ = gt_norm_mask_[:, :, 0, :] > 0.5 # (B, 1, N)
|
141 |
+
|
142 |
+
pred_norm, pred_kappa = pred[:, 0:3, :], pred[:, 3:, :]
|
143 |
+
|
144 |
+
if self.loss_type == 'UG_NLL_vMF':
|
145 |
+
dot = torch.cosine_similarity(pred_norm, gt_norm_, dim=1) # (B, N)
|
146 |
+
|
147 |
+
valid_mask = gt_norm_mask_[:, 0, :].float() \
|
148 |
+
* (dot.detach() < 0.999).float() \
|
149 |
+
* (dot.detach() > -0.999).float()
|
150 |
+
valid_mask = valid_mask > 0.5
|
151 |
+
|
152 |
+
dot = dot[valid_mask]
|
153 |
+
kappa = pred_kappa[:, 0, :][valid_mask]
|
154 |
+
|
155 |
+
loss_pixelwise = - torch.log(kappa) \
|
156 |
+
- (kappa * (dot - 1)) \
|
157 |
+
+ torch.log(1 - torch.exp(- 2 * kappa))
|
158 |
+
loss = loss + torch.mean(loss_pixelwise)
|
159 |
+
|
160 |
+
elif self.loss_type == 'UG_NLL_ours':
|
161 |
+
dot = torch.cosine_similarity(pred_norm, gt_norm_, dim=1) # (B, N)
|
162 |
+
|
163 |
+
valid_mask = gt_norm_mask_[:, 0, :].float() \
|
164 |
+
* (dot.detach() < 0.999).float() \
|
165 |
+
* (dot.detach() > -0.999).float()
|
166 |
+
valid_mask = valid_mask > 0.5
|
167 |
+
|
168 |
+
dot = dot[valid_mask]
|
169 |
+
kappa = pred_kappa[:, 0, :][valid_mask]
|
170 |
+
|
171 |
+
loss_pixelwise = - torch.log(torch.square(kappa) + 1) \
|
172 |
+
+ kappa * torch.acos(dot) \
|
173 |
+
+ torch.log(1 + torch.exp(-kappa * np.pi))
|
174 |
+
loss = loss + torch.mean(loss_pixelwise)
|
175 |
+
|
176 |
+
else:
|
177 |
+
raise Exception
|
178 |
+
return loss
|
prismer/experts/normal/utils/utils.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
import matplotlib
|
10 |
+
matplotlib.use('Agg')
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# convert arg line to args
|
16 |
+
def convert_arg_line_to_args(arg_line):
|
17 |
+
for arg in arg_line.split():
|
18 |
+
if not arg.strip():
|
19 |
+
continue
|
20 |
+
yield str(arg)
|
21 |
+
|
22 |
+
|
23 |
+
# save args
|
24 |
+
def save_args(args, filename):
|
25 |
+
with open(filename, 'w') as f:
|
26 |
+
for arg in vars(args):
|
27 |
+
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
|
28 |
+
|
29 |
+
|
30 |
+
# concatenate images
|
31 |
+
def concat_image(image_path_list, concat_image_path):
|
32 |
+
imgs = [Image.open(i).convert("RGB").resize((640, 480), resample=Image.BILINEAR) for i in image_path_list]
|
33 |
+
imgs_list = []
|
34 |
+
for i in range(len(imgs)):
|
35 |
+
img = imgs[i]
|
36 |
+
imgs_list.append(np.asarray(img))
|
37 |
+
|
38 |
+
H, W, _ = np.asarray(img).shape
|
39 |
+
imgs_list.append(255 * np.ones((H, 20, 3)).astype('uint8'))
|
40 |
+
|
41 |
+
imgs_comb = np.hstack(imgs_list[:-1])
|
42 |
+
imgs_comb = Image.fromarray(imgs_comb)
|
43 |
+
imgs_comb.save(concat_image_path)
|
44 |
+
|
45 |
+
|
46 |
+
# load model
|
47 |
+
def load_checkpoint(fpath, model):
|
48 |
+
ckpt = torch.load(fpath, map_location='cpu')['model']
|
49 |
+
|
50 |
+
load_dict = {}
|
51 |
+
for k, v in ckpt.items():
|
52 |
+
if k.startswith('module.'):
|
53 |
+
k_ = k.replace('module.', '')
|
54 |
+
load_dict[k_] = v
|
55 |
+
else:
|
56 |
+
load_dict[k] = v
|
57 |
+
|
58 |
+
model.load_state_dict(load_dict)
|
59 |
+
return model
|
60 |
+
|
61 |
+
|
62 |
+
# compute normal errors
|
63 |
+
def compute_normal_errors(total_normal_errors):
|
64 |
+
metrics = {
|
65 |
+
'mean': np.average(total_normal_errors),
|
66 |
+
'median': np.median(total_normal_errors),
|
67 |
+
'rmse': np.sqrt(np.sum(total_normal_errors * total_normal_errors) / total_normal_errors.shape),
|
68 |
+
'a1': 100.0 * (np.sum(total_normal_errors < 5) / total_normal_errors.shape[0]),
|
69 |
+
'a2': 100.0 * (np.sum(total_normal_errors < 7.5) / total_normal_errors.shape[0]),
|
70 |
+
'a3': 100.0 * (np.sum(total_normal_errors < 11.25) / total_normal_errors.shape[0]),
|
71 |
+
'a4': 100.0 * (np.sum(total_normal_errors < 22.5) / total_normal_errors.shape[0]),
|
72 |
+
'a5': 100.0 * (np.sum(total_normal_errors < 30) / total_normal_errors.shape[0])
|
73 |
+
}
|
74 |
+
return metrics
|
75 |
+
|
76 |
+
|
77 |
+
# log normal errors
|
78 |
+
def log_normal_errors(metrics, where_to_write, first_line):
|
79 |
+
print(first_line)
|
80 |
+
print("mean median rmse 5 7.5 11.25 22.5 30")
|
81 |
+
print("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f" % (
|
82 |
+
metrics['mean'], metrics['median'], metrics['rmse'],
|
83 |
+
metrics['a1'], metrics['a2'], metrics['a3'], metrics['a4'], metrics['a5']))
|
84 |
+
|
85 |
+
with open(where_to_write, 'a') as f:
|
86 |
+
f.write('%s\n' % first_line)
|
87 |
+
f.write("mean median rmse 5 7.5 11.25 22.5 30\n")
|
88 |
+
f.write("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f\n\n" % (
|
89 |
+
metrics['mean'], metrics['median'], metrics['rmse'],
|
90 |
+
metrics['a1'], metrics['a2'], metrics['a3'], metrics['a4'], metrics['a5']))
|
91 |
+
|
92 |
+
|
93 |
+
# makedir
|
94 |
+
def makedir(dirpath):
|
95 |
+
if not os.path.exists(dirpath):
|
96 |
+
os.makedirs(dirpath)
|
97 |
+
|
98 |
+
|
99 |
+
# makedir from list
|
100 |
+
def make_dir_from_list(dirpath_list):
|
101 |
+
for dirpath in dirpath_list:
|
102 |
+
makedir(dirpath)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
########################################################################################################################
|
107 |
+
# Visualization
|
108 |
+
########################################################################################################################
|
109 |
+
|
110 |
+
|
111 |
+
# unnormalize image
|
112 |
+
__imagenet_stats = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}
|
113 |
+
def unnormalize(img_in):
|
114 |
+
img_out = np.zeros(img_in.shape)
|
115 |
+
for ich in range(3):
|
116 |
+
img_out[:, :, ich] = img_in[:, :, ich] * __imagenet_stats['std'][ich]
|
117 |
+
img_out[:, :, ich] += __imagenet_stats['mean'][ich]
|
118 |
+
img_out = (img_out * 255).astype(np.uint8)
|
119 |
+
return img_out
|
120 |
+
|
121 |
+
|
122 |
+
# kappa to exp error (only applicable to AngMF distribution)
|
123 |
+
def kappa_to_alpha(pred_kappa):
|
124 |
+
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \
|
125 |
+
+ ((np.exp(- pred_kappa * np.pi) * np.pi) / (1 + np.exp(- pred_kappa * np.pi)))
|
126 |
+
alpha = np.degrees(alpha)
|
127 |
+
return alpha
|
128 |
+
|
129 |
+
|
130 |
+
# normal vector to rgb values
|
131 |
+
def norm_to_rgb(norm):
|
132 |
+
# norm: (B, H, W, 3)
|
133 |
+
norm_rgb = ((norm[0, ...] + 1) * 0.5) * 255
|
134 |
+
norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255)
|
135 |
+
norm_rgb = norm_rgb.astype(np.uint8)
|
136 |
+
return norm_rgb
|
137 |
+
|
138 |
+
|
139 |
+
# visualize during training
|
140 |
+
def visualize(args, img, gt_norm, gt_norm_mask, norm_out_list, total_iter):
|
141 |
+
B, _, H, W = gt_norm.shape
|
142 |
+
|
143 |
+
pred_norm_list = []
|
144 |
+
pred_kappa_list = []
|
145 |
+
for norm_out in norm_out_list:
|
146 |
+
norm_out = F.interpolate(norm_out, size=[gt_norm.size(2), gt_norm.size(3)], mode='nearest')
|
147 |
+
pred_norm = norm_out[:, :3, :, :] # (B, 3, H, W)
|
148 |
+
pred_norm = pred_norm.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 3)
|
149 |
+
pred_norm_list.append(pred_norm)
|
150 |
+
|
151 |
+
pred_kappa = norm_out[:, 3:, :, :] # (B, 1, H, W)
|
152 |
+
pred_kappa = pred_kappa.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 1)
|
153 |
+
pred_kappa_list.append(pred_kappa)
|
154 |
+
|
155 |
+
# to numpy arrays
|
156 |
+
img = img.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 3)
|
157 |
+
gt_norm = gt_norm.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 3)
|
158 |
+
gt_norm_mask = gt_norm_mask.detach().cpu().permute(0, 2, 3, 1).numpy() # (B, H, W, 1)
|
159 |
+
|
160 |
+
# input image
|
161 |
+
target_path = '%s/%08d_img.jpg' % (args.exp_vis_dir, total_iter)
|
162 |
+
img = unnormalize(img[0, ...])
|
163 |
+
plt.imsave(target_path, img)
|
164 |
+
|
165 |
+
# gt norm
|
166 |
+
gt_norm_rgb = ((gt_norm[0, ...] + 1) * 0.5) * 255
|
167 |
+
gt_norm_rgb = np.clip(gt_norm_rgb, a_min=0, a_max=255)
|
168 |
+
gt_norm_rgb = gt_norm_rgb.astype(np.uint8)
|
169 |
+
|
170 |
+
target_path = '%s/%08d_gt_norm.jpg' % (args.exp_vis_dir, total_iter)
|
171 |
+
plt.imsave(target_path, gt_norm_rgb * gt_norm_mask[0, ...])
|
172 |
+
|
173 |
+
# pred_norm
|
174 |
+
for i in range(len(pred_norm_list)):
|
175 |
+
pred_norm = pred_norm_list[i]
|
176 |
+
pred_norm_rgb = norm_to_rgb(pred_norm)
|
177 |
+
target_path = '%s/%08d_pred_norm_%d.jpg' % (args.exp_vis_dir, total_iter, i)
|
178 |
+
plt.imsave(target_path, pred_norm_rgb)
|
179 |
+
|
180 |
+
pred_kappa = pred_kappa_list[i]
|
181 |
+
pred_alpha = kappa_to_alpha(pred_kappa)
|
182 |
+
target_path = '%s/%08d_pred_alpha_%d.jpg' % (args.exp_vis_dir, total_iter, i)
|
183 |
+
plt.imsave(target_path, pred_alpha[0, :, :, 0], vmin=0, vmax=60, cmap='jet')
|
184 |
+
|
185 |
+
# error in angles
|
186 |
+
DP = np.sum(gt_norm * pred_norm, axis=3, keepdims=True) # (B, H, W, 1)
|
187 |
+
DP = np.clip(DP, -1, 1)
|
188 |
+
E = np.degrees(np.arccos(DP)) # (B, H, W, 1)
|
189 |
+
E = E * gt_norm_mask
|
190 |
+
target_path = '%s/%08d_pred_error_%d.jpg' % (args.exp_vis_dir, total_iter, i)
|
191 |
+
plt.imsave(target_path, E[0, :, :, 0], vmin=0, vmax=60, cmap='jet')
|
prismer/experts/obj_detection/configs/Base-CRCNN-COCO.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL:
|
2 |
+
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_p67_resnet_fpn_backbone"
|
5 |
+
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
6 |
+
RESNETS:
|
7 |
+
OUT_FEATURES: ["res3", "res4", "res5"]
|
8 |
+
DEPTH: 50
|
9 |
+
FPN:
|
10 |
+
IN_FEATURES: ["res3", "res4", "res5"]
|
11 |
+
ANCHOR_GENERATOR:
|
12 |
+
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
|
13 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
|
14 |
+
RPN:
|
15 |
+
IN_FEATURES: ["p3", "p4", "p5", "p6", "p7"]
|
16 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
17 |
+
PRE_NMS_TOPK_TEST: 1000
|
18 |
+
POST_NMS_TOPK_TRAIN: 2000
|
19 |
+
POST_NMS_TOPK_TEST: 1000
|
20 |
+
ROI_HEADS:
|
21 |
+
NUM_CLASSES: 80
|
22 |
+
NAME: CustomCascadeROIHeads
|
23 |
+
IN_FEATURES: ["p3", "p4", "p5"]
|
24 |
+
SCORE_THRESH_TEST: 0.0001
|
25 |
+
ROI_BOX_HEAD:
|
26 |
+
NAME: "FastRCNNConvFCHead"
|
27 |
+
NUM_FC: 2
|
28 |
+
POOLER_RESOLUTION: 7
|
29 |
+
CLS_AGNOSTIC_BBOX_REG: True
|
30 |
+
DATASETS:
|
31 |
+
TRAIN: ("coco_2017_train",)
|
32 |
+
TEST: ("coco_2017_val",)
|
33 |
+
TEST:
|
34 |
+
DETECTIONS_PER_IMAGE: 300
|
35 |
+
SOLVER:
|
36 |
+
IMS_PER_BATCH: 16
|
37 |
+
BASE_LR: 0.01
|
38 |
+
STEPS: (60000, 80000)
|
39 |
+
MAX_ITER: 90000
|
40 |
+
CHECKPOINT_PERIOD: 1000000
|
41 |
+
WARMUP_ITERS: 4000
|
42 |
+
WARMUP_FACTOR: 0.00025
|
43 |
+
CLIP_GRADIENTS:
|
44 |
+
ENABLED: True
|
45 |
+
INPUT:
|
46 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
47 |
+
VERSION: 2
|
48 |
+
OUTPUT_DIR: "output/UniDet/auto"
|
prismer/experts/obj_detection/configs/O365_CRFR50_CAS_2x.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO"
|
2 |
+
MODEL:
|
3 |
+
ROI_HEADS:
|
4 |
+
NUM_CLASSES: 365
|
5 |
+
DATASETS:
|
6 |
+
TRAIN: ("objects365_train",)
|
7 |
+
TEST: ("objects365_val",)
|
8 |
+
SOLVER:
|
9 |
+
IMS_PER_BATCH: 16
|
10 |
+
BASE_LR: 0.01
|
11 |
+
STEPS: (120000, 160000,)
|
12 |
+
MAX_ITER: 180000
|
13 |
+
CHECKPOINT_PERIOD: 120000
|
14 |
+
DATALOADER:
|
15 |
+
SAMPLER_TRAIN: "ClassAwareSampler"
|
prismer/experts/obj_detection/configs/OID_CRFR50_CAS_2x.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO"
|
2 |
+
MODEL:
|
3 |
+
ROI_HEADS:
|
4 |
+
NUM_CLASSES: 500
|
5 |
+
ROI_BOX_HEAD:
|
6 |
+
USE_SIGMOID_CE: True
|
7 |
+
USE_EQL_LOSS: True
|
8 |
+
EQL_FREQ_CAT: 200
|
9 |
+
EQL_CAT_INFO: 'datasets/oid/annotations/openimages_challenge_2019_train_v2_cat_info.json'
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("oid_train",)
|
14 |
+
TEST: ("oid_val_expanded",)
|
15 |
+
SOLVER:
|
16 |
+
IMS_PER_BATCH: 16
|
17 |
+
BASE_LR: 0.01
|
18 |
+
STEPS: (120000, 160000,)
|
19 |
+
MAX_ITER: 180000
|
20 |
+
CHECKPOINT_PERIOD: 120000
|
21 |
+
DATALOADER:
|
22 |
+
SAMPLER_TRAIN: "ClassAwareSampler"
|
prismer/experts/obj_detection/configs/Partitioned_COIM_R50_6x+2x.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "SplitClassifierRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: -1
|
6 |
+
NAME: "MultiDatasetCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train","mapillary_960_train")
|
14 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',"mapillary_val")
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
NUM_WORKERS: 1
|
18 |
+
MULTI_DATASET:
|
19 |
+
ENABLED: True
|
20 |
+
DATASETS: ['coco', 'objects365', 'oid', 'mapillary']
|
21 |
+
NUM_CLASSES: [80, 365, 500, 37]
|
22 |
+
DATA_RATIO: [1, 1, 1, 1]
|
23 |
+
USE_CAS: [False, True, True, False]
|
24 |
+
SOLVER:
|
25 |
+
IMS_PER_BATCH: 16
|
26 |
+
BASE_LR: 0.001
|
27 |
+
STEPS: (160000,)
|
28 |
+
MAX_ITER: 180000
|
prismer/experts/obj_detection/configs/Partitioned_COI_R50_2x.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "SplitClassifierRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: -1
|
6 |
+
NAME: "MultiDatasetCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
14 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
NUM_WORKERS: 1
|
18 |
+
MULTI_DATASET:
|
19 |
+
ENABLED: True
|
20 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
21 |
+
NUM_CLASSES: [80, 365, 500]
|
22 |
+
DATA_RATIO: [1, 1, 1]
|
23 |
+
USE_CAS: [False, True, True]
|
24 |
+
SOLVER:
|
25 |
+
IMS_PER_BATCH: 16
|
26 |
+
STEPS: (120000, 160000)
|
27 |
+
MAX_ITER: 180000
|
28 |
+
CHECKPOINT_PERIOD: 120000
|
29 |
+
|
prismer/experts/obj_detection/configs/Partitioned_COI_R50_6x.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "SplitClassifierRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: -1
|
6 |
+
NAME: "MultiDatasetCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
14 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
NUM_WORKERS: 1
|
18 |
+
MULTI_DATASET:
|
19 |
+
ENABLED: True
|
20 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
21 |
+
NUM_CLASSES: [80, 365, 500]
|
22 |
+
DATA_RATIO: [1, 1, 1]
|
23 |
+
USE_CAS: [False, True, True]
|
24 |
+
SOLVER:
|
25 |
+
IMS_PER_BATCH: 16
|
26 |
+
STEPS: (480000, 500000)
|
27 |
+
MAX_ITER: 540000
|
28 |
+
CHECKPOINT_PERIOD: 120000
|
prismer/experts/obj_detection/configs/Partitioned_COI_R50_8x.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "SplitClassifierRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: -1
|
6 |
+
NAME: "MultiDatasetCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
14 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
NUM_WORKERS: 1
|
18 |
+
MULTI_DATASET:
|
19 |
+
ENABLED: True
|
20 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
21 |
+
NUM_CLASSES: [80, 365, 500]
|
22 |
+
DATA_RATIO: [1, 1, 1]
|
23 |
+
USE_CAS: [False, True, True]
|
24 |
+
SOLVER:
|
25 |
+
IMS_PER_BATCH: 16
|
26 |
+
STEPS: (660000, 700000)
|
27 |
+
MAX_ITER: 720000
|
28 |
+
CHECKPOINT_PERIOD: 120000
|
prismer/experts/obj_detection/configs/Partitioned_COI_RS101_2x.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_p67_resnest_fpn_backbone"
|
5 |
+
WEIGHTS: "https://hangzh.s3-us-west-1.amazonaws.com/encoding/models/resnest101_detectron-486f69a8.pth"
|
6 |
+
PIXEL_MEAN: [123.68, 116.779, 103.939]
|
7 |
+
PIXEL_STD: [58.393, 57.12, 57.375]
|
8 |
+
RESNETS:
|
9 |
+
DEPTH: 101
|
10 |
+
STRIDE_IN_1X1: False
|
11 |
+
RADIX: 2
|
12 |
+
NORM: "SyncBN"
|
13 |
+
FPN:
|
14 |
+
NORM: "SyncBN"
|
15 |
+
META_ARCHITECTURE: "SplitClassifierRCNN"
|
16 |
+
ROI_HEADS:
|
17 |
+
NUM_CLASSES: -1
|
18 |
+
NAME: "MultiDatasetCascadeROIHeads"
|
19 |
+
ROI_BOX_HEAD:
|
20 |
+
USE_SIGMOID_CE: True
|
21 |
+
# USE_EQL_LOSS: True
|
22 |
+
HIERARCHY_IGNORE: True
|
23 |
+
HIERARCHY_POS_PARENTS: True
|
24 |
+
NAME: "FastRCNNConvFCHead"
|
25 |
+
NUM_CONV: 4
|
26 |
+
NUM_FC: 1
|
27 |
+
NORM: "SyncBN"
|
28 |
+
INPUT:
|
29 |
+
FORMAT: "RGB"
|
30 |
+
DATASETS:
|
31 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
32 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
33 |
+
DATALOADER:
|
34 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
35 |
+
NUM_WORKERS: 1
|
36 |
+
MULTI_DATASET:
|
37 |
+
ENABLED: True
|
38 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
39 |
+
NUM_CLASSES: [80, 365, 500]
|
40 |
+
DATA_RATIO: [1, 1, 1]
|
41 |
+
USE_CAS: [False, True, True]
|
42 |
+
SOLVER:
|
43 |
+
IMS_PER_BATCH: 16
|
44 |
+
STEPS: (120000, 160000)
|
45 |
+
MAX_ITER: 180000
|
46 |
+
CHECKPOINT_PERIOD: 120000
|
prismer/experts/obj_detection/configs/Unified_human_OCI_R50_2x.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "UnifiedRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: 659
|
6 |
+
NAME: "UnifiedCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
14 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
NUM_WORKERS: 1
|
18 |
+
MULTI_DATASET:
|
19 |
+
ENABLED: True
|
20 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
21 |
+
NUM_CLASSES: [80, 365, 500]
|
22 |
+
DATA_RATIO: [1, 1, 1]
|
23 |
+
USE_CAS: [False, True, True]
|
24 |
+
UNIFIED_LABEL_FILE: 'datasets/label_spaces/manual.json'
|
25 |
+
SOLVER:
|
26 |
+
IMS_PER_BATCH: 16
|
27 |
+
STEPS: (120000,160000)
|
28 |
+
MAX_ITER: 180000
|
29 |
+
CHECKPOINT_PERIOD: 120000
|
prismer/experts/obj_detection/configs/Unified_learned_OCIM_R50_6x+2x.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "UnifiedRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: 722
|
6 |
+
NAME: "UnifiedCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("objects365_train","coco_2017_train","oid_train","mapillary_960_train")
|
14 |
+
TEST: ("coco_2017_val", "objects365_val", "oid_val_v2_expanded","mapillary_val")
|
15 |
+
# TEST: ('voc_cocoformat_test','viper_val', 'scannet_val','wilddash_public',
|
16 |
+
# 'kitti_train','crowdhuman_val', 'cityscapes_cocoformat_val',)
|
17 |
+
DATALOADER:
|
18 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
19 |
+
NUM_WORKERS: 1
|
20 |
+
MULTI_DATASET:
|
21 |
+
ENABLED: True
|
22 |
+
DATASETS: ['objects365', 'coco', 'oid', 'mapillary']
|
23 |
+
NUM_CLASSES: [365, 80, 500, 37]
|
24 |
+
DATA_RATIO: [1, 1, 1, 1]
|
25 |
+
USE_CAS: [True, False, True, False]
|
26 |
+
UNIFIED_LABEL_FILE: 'experts/obj_detection/datasets/label_spaces/learned_mAP+M.json'
|
27 |
+
# MATCH_NOVEL_CLASSES_FILE: 'datasets/label_spaces/mAP_val+M_722_4d_labelmap_test.json'
|
28 |
+
# UNIFIED_EVAL: True
|
29 |
+
# UNIFIED_NOVEL_CLASSES_EVAL: True
|
30 |
+
# UNIFY_LABEL_TEST: False
|
31 |
+
SOLVER:
|
32 |
+
IMS_PER_BATCH: 16
|
33 |
+
BASE_LR: 0.001
|
34 |
+
STEPS: (160000,)
|
35 |
+
MAX_ITER: 180000
|
prismer/experts/obj_detection/configs/Unified_learned_OCIM_RS200_6x+2x.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_p67_resnest_fpn_backbone"
|
5 |
+
PIXEL_MEAN: [123.68, 116.779, 103.939]
|
6 |
+
PIXEL_STD: [58.393, 57.12, 57.375]
|
7 |
+
RESNETS:
|
8 |
+
DEPTH: 200
|
9 |
+
STRIDE_IN_1X1: False
|
10 |
+
RADIX: 2
|
11 |
+
NORM: "SyncBN"
|
12 |
+
FPN:
|
13 |
+
NORM: "SyncBN"
|
14 |
+
META_ARCHITECTURE: "UnifiedRCNN"
|
15 |
+
ROI_HEADS:
|
16 |
+
NUM_CLASSES: 722
|
17 |
+
NAME: "UnifiedCascadeROIHeads"
|
18 |
+
ROI_BOX_HEAD:
|
19 |
+
USE_SIGMOID_CE: True
|
20 |
+
# USE_EQL_LOSS: True
|
21 |
+
HIERARCHY_IGNORE: True
|
22 |
+
HIERARCHY_POS_PARENTS: True
|
23 |
+
NAME: "FastRCNNConvFCHead"
|
24 |
+
NUM_CONV: 4
|
25 |
+
NUM_FC: 1
|
26 |
+
NORM: "SyncBN"
|
27 |
+
INPUT:
|
28 |
+
FORMAT: "RGB"
|
29 |
+
DATASETS:
|
30 |
+
TRAIN: ("objects365_train","coco_2017_train","oid_train","mapillary_960_train")
|
31 |
+
TEST: ("coco_2017_val", "objects365_val", "oid_val_v2_expanded","mapillary_val")
|
32 |
+
DATALOADER:
|
33 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
34 |
+
NUM_WORKERS: 1
|
35 |
+
MULTI_DATASET:
|
36 |
+
ENABLED: True
|
37 |
+
DATASETS: ['objects365', 'coco', 'oid', 'mapillary']
|
38 |
+
NUM_CLASSES: [365, 80, 500, 37]
|
39 |
+
DATA_RATIO: [1, 1, 1, 1]
|
40 |
+
USE_CAS: [True, False, True, False]
|
41 |
+
UNIFIED_LABEL_FILE: 'experts/obj_detection/datasets/label_spaces/learned_mAP+M.json'
|
42 |
+
SOLVER:
|
43 |
+
IMS_PER_BATCH: 16
|
44 |
+
STEPS: (480000, 500000)
|
45 |
+
MAX_ITER: 540000
|
46 |
+
CHECKPOINT_PERIOD: 120000
|
prismer/experts/obj_detection/configs/Unified_learned_OCI_R50_2x.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "UnifiedRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: 701
|
6 |
+
NAME: "UnifiedCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
14 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
NUM_WORKERS: 1
|
18 |
+
MULTI_DATASET:
|
19 |
+
ENABLED: True
|
20 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
21 |
+
NUM_CLASSES: [80, 365, 500]
|
22 |
+
DATA_RATIO: [1, 1, 1]
|
23 |
+
USE_CAS: [False, True, True]
|
24 |
+
UNIFIED_LABEL_FILE: 'datasets/label_spaces/learned_mAP.json'
|
25 |
+
SOLVER:
|
26 |
+
IMS_PER_BATCH: 16
|
27 |
+
STEPS: (120000,160000)
|
28 |
+
MAX_ITER: 180000
|
29 |
+
CHECKPOINT_PERIOD: 120000
|
prismer/experts/obj_detection/configs/Unified_learned_OCI_R50_6x.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "UnifiedRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: 701
|
6 |
+
NAME: "UnifiedCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
14 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
NUM_WORKERS: 1
|
18 |
+
MULTI_DATASET:
|
19 |
+
ENABLED: True
|
20 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
21 |
+
NUM_CLASSES: [80, 365, 500]
|
22 |
+
DATA_RATIO: [1, 1, 1]
|
23 |
+
USE_CAS: [False, True, True]
|
24 |
+
UNIFIED_LABEL_FILE: 'datasets/label_spaces/learned_mAP.json'
|
25 |
+
SOLVER:
|
26 |
+
IMS_PER_BATCH: 16
|
27 |
+
STEPS: (480000, 500000)
|
28 |
+
MAX_ITER: 540000
|
29 |
+
CHECKPOINT_PERIOD: 120000
|
prismer/experts/obj_detection/configs/Unified_learned_OCI_R50_8x.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
META_ARCHITECTURE: "UnifiedRCNN"
|
4 |
+
ROI_HEADS:
|
5 |
+
NUM_CLASSES: 722
|
6 |
+
NAME: "UnifiedCascadeROIHeads"
|
7 |
+
ROI_BOX_HEAD:
|
8 |
+
USE_SIGMOID_CE: True
|
9 |
+
# USE_EQL_LOSS: True
|
10 |
+
HIERARCHY_IGNORE: True
|
11 |
+
HIERARCHY_POS_PARENTS: True
|
12 |
+
DATASETS:
|
13 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
14 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
15 |
+
DATALOADER:
|
16 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
17 |
+
NUM_WORKERS: 1
|
18 |
+
MULTI_DATASET:
|
19 |
+
ENABLED: True
|
20 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
21 |
+
NUM_CLASSES: [80, 365, 500]
|
22 |
+
DATA_RATIO: [1, 1, 1]
|
23 |
+
USE_CAS: [False, True, True]
|
24 |
+
UNIFIED_LABEL_FILE: 'datasets/label_spaces/learned_mAP+M.json'
|
25 |
+
SOLVER:
|
26 |
+
IMS_PER_BATCH: 16
|
27 |
+
STEPS: (660000, 700000)
|
28 |
+
MAX_ITER: 720000
|
29 |
+
CHECKPOINT_PERIOD: 120000
|
prismer/experts/obj_detection/configs/Unified_learned_OCI_RS200_6x.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: "Base-CRCNN-COCO.yaml"
|
2 |
+
MODEL:
|
3 |
+
BACKBONE:
|
4 |
+
NAME: "build_p67_resnest_fpn_backbone"
|
5 |
+
PIXEL_MEAN: [123.68, 116.779, 103.939]
|
6 |
+
PIXEL_STD: [58.393, 57.12, 57.375]
|
7 |
+
RESNETS:
|
8 |
+
DEPTH: 200
|
9 |
+
STRIDE_IN_1X1: False
|
10 |
+
RADIX: 2
|
11 |
+
NORM: "SyncBN"
|
12 |
+
FPN:
|
13 |
+
NORM: "SyncBN"
|
14 |
+
META_ARCHITECTURE: "UnifiedRCNN"
|
15 |
+
ROI_HEADS:
|
16 |
+
NUM_CLASSES: 701
|
17 |
+
NAME: "UnifiedCascadeROIHeads"
|
18 |
+
ROI_BOX_HEAD:
|
19 |
+
USE_SIGMOID_CE: True
|
20 |
+
# USE_EQL_LOSS: True
|
21 |
+
HIERARCHY_IGNORE: True
|
22 |
+
HIERARCHY_POS_PARENTS: True
|
23 |
+
NAME: "FastRCNNConvFCHead"
|
24 |
+
NUM_CONV: 4
|
25 |
+
NUM_FC: 1
|
26 |
+
NORM: "SyncBN"
|
27 |
+
INPUT:
|
28 |
+
FORMAT: "RGB"
|
29 |
+
DATASETS:
|
30 |
+
TRAIN: ("coco_2017_train","objects365_train","oid_train",)
|
31 |
+
TEST: ('coco_2017_val','oid_val_expanded','objects365_val',)
|
32 |
+
DATALOADER:
|
33 |
+
SAMPLER_TRAIN: "MultiDatasetSampler"
|
34 |
+
NUM_WORKERS: 1
|
35 |
+
MULTI_DATASET:
|
36 |
+
ENABLED: True
|
37 |
+
DATASETS: ['coco', 'objects365', 'oid']
|
38 |
+
NUM_CLASSES: [80, 365, 500]
|
39 |
+
DATA_RATIO: [1, 1, 1]
|
40 |
+
USE_CAS: [False, True, True]
|
41 |
+
UNIFIED_LABEL_FILE: 'datasets/label_spaces/learned_mAP.json'
|
42 |
+
SOLVER:
|
43 |
+
IMS_PER_BATCH: 16
|
44 |
+
STEPS: (480000, 500000)
|
45 |
+
MAX_ITER: 540000
|
46 |
+
CHECKPOINT_PERIOD: 120000
|