Spaces:
Sleeping
Sleeping
Fix resolution
Browse files- prismer/experts/model_bank.py +3 -3
- prismer_model.py +2 -4
prismer/experts/model_bank.py
CHANGED
@@ -40,7 +40,7 @@ def load_expert_model(task=None):
|
|
40 |
cfg = setup_cfg(args)
|
41 |
model = DefaultPredictor(cfg).model
|
42 |
transform = transforms.Compose([
|
43 |
-
transforms.Resize(
|
44 |
])
|
45 |
|
46 |
elif task == 'seg_ade':
|
@@ -60,7 +60,7 @@ def load_expert_model(task=None):
|
|
60 |
cfg = setup_cfg(args)
|
61 |
model = DefaultPredictor(cfg).model
|
62 |
transform = transforms.Compose([
|
63 |
-
transforms.Resize(
|
64 |
])
|
65 |
|
66 |
elif task == 'obj_detection':
|
@@ -81,7 +81,7 @@ def load_expert_model(task=None):
|
|
81 |
cfg = setup_cfg(args)
|
82 |
model = DefaultPredictor(cfg).model
|
83 |
transform = transforms.Compose([
|
84 |
-
transforms.Resize(
|
85 |
])
|
86 |
|
87 |
elif task == 'ocr_detection':
|
|
|
40 |
cfg = setup_cfg(args)
|
41 |
model = DefaultPredictor(cfg).model
|
42 |
transform = transforms.Compose([
|
43 |
+
transforms.Resize([480, 480])
|
44 |
])
|
45 |
|
46 |
elif task == 'seg_ade':
|
|
|
60 |
cfg = setup_cfg(args)
|
61 |
model = DefaultPredictor(cfg).model
|
62 |
transform = transforms.Compose([
|
63 |
+
transforms.Resize([480, 480])
|
64 |
])
|
65 |
|
66 |
elif task == 'obj_detection':
|
|
|
81 |
cfg = setup_cfg(args)
|
82 |
model = DefaultPredictor(cfg).model
|
83 |
transform = transforms.Compose([
|
84 |
+
transforms.Resize([480, 480])
|
85 |
])
|
86 |
|
87 |
elif task == 'ocr_detection':
|
prismer_model.py
CHANGED
@@ -63,12 +63,10 @@ def run_experts(image_path: str) -> tuple[str | None, ...]:
|
|
63 |
out_path = image_dir / 'image.jpg'
|
64 |
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))
|
65 |
|
|
|
66 |
run_expert('depth')
|
67 |
with concurrent.futures.ProcessPoolExecutor() as executor:
|
68 |
-
executor.map(run_expert,
|
69 |
-
|
70 |
-
with concurrent.futures.ProcessPoolExecutor() as executor:
|
71 |
-
executor.map(run_expert, ['ocrdet', 'segmentation'])
|
72 |
|
73 |
keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection']
|
74 |
results = [pathlib.Path('prismer/helpers/labels') / key / 'helpers/images/image.png' for key in keys]
|
|
|
63 |
out_path = image_dir / 'image.jpg'
|
64 |
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))
|
65 |
|
66 |
+
expert_names = ['edge', 'normal', 'objdet', 'ocrdet', 'segmentation']
|
67 |
run_expert('depth')
|
68 |
with concurrent.futures.ProcessPoolExecutor() as executor:
|
69 |
+
executor.map(run_expert, expert_names)
|
|
|
|
|
|
|
70 |
|
71 |
keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection']
|
72 |
results = [pathlib.Path('prismer/helpers/labels') / key / 'helpers/images/image.png' for key in keys]
|