import gradio as gr from PIL import Image import tempfile def predict_depth(model, image): depth = model.infer_pil(image) return depth def create_demo(): with gr.Row(): with gr.Column(scale=1): model_type = gr.Dropdown(["Prismer-Base", "Prismer-Large"], label="Model Size", value="Prismer-Base") rgb = gr.Image(label="Input Image", type='pil', elem_id='img-display-input') submit = gr.Button("Submit") with gr.Column(scale=2): pred = gr.Textbox(label="Model Prediction") with gr.Row(): depth = gr.Image(label="Depth", elem_id='img-display-output') edge = gr.Image(label="Edge", elem_id='img-display-output') normals = gr.Image(label="Normals", elem_id='img-display-output') with gr.Row(): seg = gr.Image(label="Segmentation", elem_id='img-display-output') obj_det = gr.Image(label="Object Detection", elem_id='img-display-output') ocr_det = gr.Image(label="OCR Detection", elem_id='img-display-output') def on_submit(im, model_type): return pred, depth, edge, normals, seg, obj_det, ocr_det submit.click(on_submit, inputs=[rgb, model_type], outputs=[pred, depth, edge, normals, seg, obj_det, ocr_det]) examples = gr.Examples(examples=["examples/1.png"], inputs=[rgb])