from __future__ import annotations import os import pathlib import gradio as gr from prismer_model import run_experts def create_demo(): with gr.Row(): with gr.Column(): image = gr.Image(label='Input', type='filepath') model_name = gr.Dropdown(label='Model', choices=['prismer_base'], value='prismer_base') run_button = gr.Button('Run') with gr.Column(scale=1.5): caption = gr.Text(label='Caption') with gr.Row(): depth = gr.Image(label='Depth') edge = gr.Image(label='Edge') normals = gr.Image(label='Normals') with gr.Row(): segmentation = gr.Image(label='Segmentation') object_detection = gr.Image(label='Object Detection') ocr = gr.Image(label='OCR Detection') inputs = [image, model_name] outputs = [depth, edge, normals] paths = sorted(pathlib.Path('prismer/images').glob('*')) examples = [[path.as_posix(), 'prismer_base'] for path in paths] gr.Examples(examples=examples, inputs=inputs, outputs=outputs, fn=run_experts, cache_examples=os.getenv('SYSTEM') == 'spaces') run_button.click(fn=run_experts, inputs=inputs, outputs=outputs) if __name__ == '__main__': demo = create_demo() demo.queue().launch()