shimizukawa's picture
Re: Update streamlit UI
b6dd5cc
raw
history blame
7.92 kB
from datetime import datetime
from time import time
from typing import Iterable
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Qdrant
from qdrant_client import QdrantClient
from qdrant_client.http.models import Filter, FieldCondition, MatchValue, Range
from langchain.chains import RetrievalQA
from openai.error import InvalidRequestError
from langchain.chat_models import ChatOpenAI
from config import DB_CONFIG, INDEX_NAMES
from models import BaseModel
@st.cache_resource
def load_embeddings():
model_name = "intfloat/multilingual-e5-large"
model_kwargs = {"device": "cuda:0" if torch.cuda.is_available() else "cpu"}
encode_kwargs = {"normalize_embeddings": False}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
)
return embeddings
@st.cache_resource
def llm_model(model="gpt-3.5-turbo", temperature=0.2):
llm = ChatOpenAI(model=model, temperature=temperature)
return llm
@st.cache_resource
def load_vicuna_model():
if torch.cuda.is_available():
model_name = "lmsys/vicuna-13b-v1.5"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
return tokenizer, model
else:
return None, None
EMBEDDINGS = load_embeddings()
LLM = llm_model()
VICUNA_TOKENIZER, VICUNA_MODEL = load_vicuna_model()
@st.cache_resource
def _get_vicuna_llm(temperature=0.2) -> HuggingFacePipeline | None:
if VICUNA_MODEL is not None:
pipe = pipeline(
"text-generation",
model=VICUNA_MODEL,
tokenizer=VICUNA_TOKENIZER,
max_new_tokens=1024,
temperature=temperature,
)
llm = HuggingFacePipeline(pipeline=pipe)
else:
llm = None
return llm
VICUNA_LLM = _get_vicuna_llm()
def make_filter_obj(options: list[dict[str]]):
# print(options)
must = []
for option in options:
if "value" in option:
must.append(
FieldCondition(
key=option["key"], match=MatchValue(value=option["value"])
)
)
elif "range" in option:
range_ = option["range"]
must.append(
FieldCondition(
key=option["key"],
range=Range(
gt=range_.get("gt"),
gte=range_.get("gte"),
lt=range_.get("lt"),
lte=range_.get("lte"),
),
)
)
filter = Filter(must=must)
return filter
def get_similay(query: str, filter: Filter):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
qdocs = db.similarity_search_with_score(
query,
k=20,
filter=filter,
)
return qdocs
def get_retrieval_qa(filter: Filter, llm):
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(
client=client, collection_name=db_collection_name, embeddings=EMBEDDINGS
)
retriever = db.as_retriever(
search_kwargs={
"filter": filter,
}
)
result = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
)
return result
def _get_related_url(metadata) -> Iterable[str]:
urls = set()
for m in metadata:
url = m["url"]
if url in urls:
continue
urls.add(url)
ctime = datetime.fromtimestamp(m["ctime"])
# print(m)
yield f'<p>URL: <a href="{url}">{url}</a> (created: {ctime:%Y-%m-%d})</p>'
def _get_query_str_filter(
query: str,
index: str,
) -> tuple[str, Filter]:
options = [{"key": "metadata.index", "value": index}]
filter = make_filter_obj(options=options)
return query, filter
def run_qa(
llm,
query: str,
index: str,
) -> tuple[str, str]:
now = time()
query_str, filter = _get_query_str_filter(query, index)
qa = get_retrieval_qa(filter, llm)
try:
result = qa(query_str)
except InvalidRequestError as e:
return "ๅ›ž็ญ”ใŒ่ฆ‹ใคใ‹ใ‚Šใพใ›ใ‚“ใงใ—ใŸใ€‚ๅˆฅใช่ณชๅ•ใ‚’ใ—ใฆใฟใฆใใ ใ•ใ„", str(e)
else:
metadata = [s.metadata for s in result["source_documents"]]
sec_html = f"<p>ๅฎŸ่กŒๆ™‚้–“: {(time() - now):.2f}็ง’</p>"
html = "<div>" + sec_html + "\n".join(_get_related_url(metadata)) + "</div>"
return result["result"], html
def run_search(
query: str,
index: str,
) -> Iterable[tuple[BaseModel, float, str]]:
query_str, filter = _get_query_str_filter(query, index)
qdocs = get_similay(query_str, filter)
for qdoc, score in qdocs:
text = qdoc.page_content
metadata = qdoc.metadata
# print(metadata)
data = BaseModel(
index=index,
id=metadata.get("id"),
title=metadata.get("title"),
ctime=metadata.get("ctime"),
user=metadata.get("user"),
url=metadata.get("url"),
type=metadata.get("type"),
)
yield data, score, text
with st.form("my_form"):
st.title("Document Search")
query = st.text_area(label="query")
index = st.selectbox(label="index", options=INDEX_NAMES)
submit_col1, submit_col2 = st.columns(2)
searched = submit_col1.form_submit_button("Search")
if searched:
st.divider()
st.header("Search Results")
st.divider()
with st.spinner("Searching..."):
results = run_search(query, index)
for doc, score, text in results:
title = doc.title
url = doc.url
id_ = doc.id
score = round(score, 3)
ctime = datetime.fromtimestamp(doc.ctime)
user = doc.user
with st.container():
st.subheader(f"#{id_} - {title}")
st.write(url)
st.write(text)
st.write("score:", score, "Date:", ctime.date(), "User:", user)
st.divider()
qa_searched = submit_col2.form_submit_button("Q&A by OpenAI")
if qa_searched:
st.divider()
st.header("Answer by OpenAI GPT-3")
st.divider()
with st.spinner("Thinking..."):
results = run_qa(
LLM,
query,
index,
)
answer, html = results
with st.container():
st.write(answer)
st.markdown(html, unsafe_allow_html=True)
st.divider()
if torch.cuda.is_available():
qa_searched_vicuna = submit_col2.form_submit_button("Answer by Vicuna")
if qa_searched_vicuna:
st.divider()
st.header("Answer by Vicuna-13b-v1.5")
st.divider()
with st.spinner("Thinking..."):
results = run_qa(
VICUNA_LLM,
query,
index,
)
answer, html = results
with st.container():
st.write(answer)
st.markdown(html, unsafe_allow_html=True)
st.divider()