Spaces:
Runtime error
Runtime error
File size: 1,178 Bytes
7b4b5e6 62a00b1 7bf8bd1 212a785 7bf8bd1 212a785 7b4b5e6 7bf8bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
# Load model directly
import streamlit as st
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"shivam9980/mistral-7b-news", # YOUR MODEL YOU USED FOR TRAINING
load_in_4bit = True,)
tokenizer = AutoTokenizer.from_pretrained("shivam9980/mistral-7b-news")
# alpaca_prompt = You MUST copy from above!
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
content = st.text_input('Content')
inputs = tokenizer(
[
alpaca_prompt.format(
"The following passage is content from a news report. Please summarize this passage in one sentence or less.", # instruction
content, # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
results= tokenizer.batch_decode(outputs)
out = results[0].split('\n')[-1]
st.text_area(label='Headline',value=out[:len(out)-4])
|