Spaces:
Runtime error
Runtime error
# Load model directly | |
import streamlit as st | |
from unsloth import FastLanguageModel | |
import torch | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = "shivam9980/mistral-7b-news-cnn-merged", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B | |
max_seq_length = 2048, | |
dtype = None, | |
load_in_4bit = True, | |
token = hf_token, # use one if using gated models like meta-llama/Llama-2-7b-hf | |
) | |
# alpaca_prompt = You MUST copy from above! | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{} | |
### Input: | |
{} | |
### Response: | |
{}""" | |
# alpaca_prompt = Copied from above | |
c = st.text_input('Enter the contents ') | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
inputs = tokenizer( | |
[ | |
alpaca_prompt.format( | |
"The following passage is content from a news report. Please summarize this passage in one sentence or less.", # instruction | |
c, | |
"", # output - leave this blank for generation! | |
) | |
], return_tensors = "pt").to("cuda") | |
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) | |
results = tokenizer.batch_decode(outputs) | |
out = results[0].split('\n')[-1] | |
st.text_area(label='Headline',value=out[:]) | |