# Load model directly import streamlit as st from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer model = AutoPeftModelForCausalLM.from_pretrained( "shivam9980/mistral-7b-news", # YOUR MODEL YOU USED FOR TRAINING load_in_4bit = True,) tokenizer = AutoTokenizer.from_pretrained("shivam9980/mistral-7b-news") # alpaca_prompt = You MUST copy from above! alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" content = st.text_input('Content') inputs = tokenizer( [ alpaca_prompt.format( "The following passage is content from a news report. Please summarize this passage in one sentence or less.", # instruction content, # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) results= tokenizer.batch_decode(outputs) out = results[0].split('\n')[-1] st.text_area(label='Headline',value=out[:len(out)-4])