Spaces:
Runtime error
Runtime error
File size: 42,764 Bytes
3c10b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 |
"""
Preprocessing Tranformers Based on sci-kit's API
By Omid Alemi
Created on June 12, 2017
Modified by Simon Alexanderson, 2020-06-24
"""
import copy
import numpy as np
import pandas as pd
import scipy.ndimage.filters as filters
from scipy.spatial.transform import Rotation as R
from sklearn.base import BaseEstimator, TransformerMixin
from pymo.Pivots import Pivots
from pymo.Quaternions import Quaternions
# import transforms3d as t3d
class MocapParameterizer(BaseEstimator, TransformerMixin):
def __init__(self, param_type="euler"):
"""
param_type = {'euler', 'quat', 'expmap', 'position', 'expmap2pos'}
"""
self.param_type = param_type
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
print("MocapParameterizer: " + self.param_type)
if self.param_type == "euler":
return X
elif self.param_type == "expmap":
return self._to_expmap(X)
elif self.param_type == "quat":
return X
elif self.param_type == "position":
return self._to_pos(X)
elif self.param_type == "expmap2pos":
return self._expmap_to_pos(X)
else:
raise "param types: euler, quat, expmap, position, expmap2pos"
# return X
def inverse_transform(self, X, copy=None):
if self.param_type == "euler":
return X
elif self.param_type == "expmap":
return self._expmap_to_euler(X)
elif self.param_type == "quat":
raise "quat2euler is not supported"
elif self.param_type == "position":
raise "positions 2 eulers is not supported"
return X
else:
raise "param types: euler, quat, expmap, position"
def fix_rotvec(self, rots):
"""fix problems with discontinuous rotation vectors"""
new_rots = rots.copy()
# Compute angles and alternative rotation angles
angs = np.linalg.norm(rots, axis=1)
alt_angs = 2 * np.pi - angs
# find discontinuities by checking if the alternative representation is closer
d_angs = np.diff(angs, axis=0)
d_angs2 = alt_angs[1:] - angs[:-1]
swps = np.where(np.abs(d_angs2) < np.abs(d_angs))[0]
# reshape into intervals where we should flip rotation axis
isodd = swps.shape[0] % 2 == 1
if isodd:
swps = swps[:-1]
intv = 1 + swps.reshape((swps.shape[0] // 2, 2))
# flip rotations in selected intervals
for ii in range(intv.shape[0]):
new_ax = -rots[intv[ii, 0] : intv[ii, 1], :] / np.tile(angs[intv[ii, 0] : intv[ii, 1], None], (1, 3))
new_angs = alt_angs[intv[ii, 0] : intv[ii, 1]]
new_rots[intv[ii, 0] : intv[ii, 1], :] = new_ax * np.tile(new_angs[:, None], (1, 3))
return new_rots
def _to_pos(self, X):
"""Converts joints rotations in Euler angles to joint positions"""
Q = []
for track in X:
channels = []
titles = []
euler_df = track.values
# Create a new DataFrame to store the exponential map rep
pos_df = pd.DataFrame(index=euler_df.index)
# List the columns that contain rotation channels
rot_cols = [c for c in euler_df.columns if ("rotation" in c)]
# List the columns that contain position channels
pos_cols = [c for c in euler_df.columns if ("position" in c)]
# List the joints that are not end sites, i.e., have channels
joints = (joint for joint in track.skeleton)
tree_data = {}
for joint in track.traverse():
parent = track.skeleton[joint]["parent"]
rot_order = track.skeleton[joint]["order"]
# Get the rotation columns that belong to this joint
rc = euler_df[[c for c in rot_cols if joint in c]]
# Get the position columns that belong to this joint
pc = euler_df[[c for c in pos_cols if joint in c]]
# Make sure the columns are organized in xyz order
if rc.shape[1] < 3:
euler_values = [[0, 0, 0] for f in rc.iterrows()]
rot_order = "XYZ"
else:
euler_values = [
[
f[1]["%s_%srotation" % (joint, rot_order[0])],
f[1]["%s_%srotation" % (joint, rot_order[1])],
f[1]["%s_%srotation" % (joint, rot_order[2])],
]
for f in rc.iterrows()
]
if pc.shape[1] < 3:
pos_values = [[0, 0, 0] for f in pc.iterrows()]
else:
pos_values = [
[f[1]["%s_Xposition" % joint], f[1]["%s_Yposition" % joint], f[1]["%s_Zposition" % joint]]
for f in pc.iterrows()
]
# Convert the eulers to rotation matrices
rotmats = R.from_euler(rot_order, euler_values, degrees=True).inv()
tree_data[joint] = [[], []] # to store the rotation matrix # to store the calculated position
if track.root_name == joint:
tree_data[joint][0] = rotmats
tree_data[joint][1] = pos_values
else:
# for every frame i, multiply this joint's rotmat to the rotmat of its parent
tree_data[joint][0] = rotmats * tree_data[parent][0]
# add the position channel to the offset and store it in k, for every frame i
k = pos_values + np.asarray(track.skeleton[joint]["offsets"])
# multiply k to the rotmat of the parent for every frame i
q = tree_data[parent][0].inv().apply(k)
# add q to the position of the parent, for every frame i
tree_data[joint][1] = tree_data[parent][1] + q
# Create the corresponding columns in the new DataFrame
pos_df["%s_Xposition" % joint] = pd.Series(data=[e[0] for e in tree_data[joint][1]], index=pos_df.index)
pos_df["%s_Yposition" % joint] = pd.Series(data=[e[1] for e in tree_data[joint][1]], index=pos_df.index)
pos_df["%s_Zposition" % joint] = pd.Series(data=[e[2] for e in tree_data[joint][1]], index=pos_df.index)
new_track = track.clone()
new_track.values = pos_df
Q.append(new_track)
return Q
def _to_expmap(self, X):
"""Converts Euler angles to Exponential Maps"""
Q = []
for track in X:
channels = []
titles = []
euler_df = track.values
# Create a new DataFrame to store the exponential map rep
exp_df = euler_df.copy()
# List the columns that contain rotation channels
rots = [c for c in euler_df.columns if ("rotation" in c and "Nub" not in c)]
# List the joints that are not end sites, i.e., have channels
joints = (joint for joint in track.skeleton if "Nub" not in joint)
for joint in joints:
r = euler_df[[c for c in rots if joint in c]] # Get the columns that belong to this joint
rot_order = track.skeleton[joint]["order"]
r1_col = "%s_%srotation" % (joint, rot_order[0])
r2_col = "%s_%srotation" % (joint, rot_order[1])
r3_col = "%s_%srotation" % (joint, rot_order[2])
exp_df.drop([r1_col, r2_col, r3_col], axis=1, inplace=True)
euler = [[f[1][r1_col], f[1][r2_col], f[1][r3_col]] for f in r.iterrows()]
exps = np.array(self.fix_rotvec(R.from_euler(rot_order.lower(), euler, degrees=True).as_rotvec()))
# Create the corresponding columns in the new DataFrame
exp_df.insert(
loc=0, column="%s_gamma" % joint, value=pd.Series(data=[e[2] for e in exps], index=exp_df.index)
)
exp_df.insert(
loc=0, column="%s_beta" % joint, value=pd.Series(data=[e[1] for e in exps], index=exp_df.index)
)
exp_df.insert(
loc=0, column="%s_alpha" % joint, value=pd.Series(data=[e[0] for e in exps], index=exp_df.index)
)
# print(exp_df.columns)
new_track = track.clone()
new_track.values = exp_df
Q.append(new_track)
return Q
def _expmap_to_euler(self, X):
Q = []
for track in X:
channels = []
titles = []
exp_df = track.values
# Create a new DataFrame to store the exponential map rep
euler_df = exp_df.copy()
# List the columns that contain rotation channels
exp_params = [
c for c in exp_df.columns if (any(p in c for p in ["alpha", "beta", "gamma"]) and "Nub" not in c)
]
# List the joints that are not end sites, i.e., have channels
joints = (joint for joint in track.skeleton if "Nub" not in joint)
for joint in joints:
r = exp_df[[c for c in exp_params if joint in c]] # Get the columns that belong to this joint
euler_df.drop(["%s_alpha" % joint, "%s_beta" % joint, "%s_gamma" % joint], axis=1, inplace=True)
expmap = [
[f[1]["%s_alpha" % joint], f[1]["%s_beta" % joint], f[1]["%s_gamma" % joint]] for f in r.iterrows()
] # Make sure the columsn are organized in xyz order
rot_order = track.skeleton[joint]["order"]
euler_rots = np.array(R.from_rotvec(expmap).as_euler(rot_order.lower(), degrees=True))
# Create the corresponding columns in the new DataFrame
euler_df["%s_%srotation" % (joint, rot_order[0])] = pd.Series(
data=[e[0] for e in euler_rots], index=euler_df.index
)
euler_df["%s_%srotation" % (joint, rot_order[1])] = pd.Series(
data=[e[1] for e in euler_rots], index=euler_df.index
)
euler_df["%s_%srotation" % (joint, rot_order[2])] = pd.Series(
data=[e[2] for e in euler_rots], index=euler_df.index
)
new_track = track.clone()
new_track.values = euler_df
Q.append(new_track)
return Q
class Mirror(BaseEstimator, TransformerMixin):
def __init__(self, axis="X", append=True):
"""
Mirrors the data
"""
self.axis = axis
self.append = append
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
print("Mirror: " + self.axis)
Q = []
if self.append:
for track in X:
Q.append(track)
for track in X:
channels = []
titles = []
if self.axis == "X":
signs = np.array([1, -1, -1])
if self.axis == "Y":
signs = np.array([-1, 1, -1])
if self.axis == "Z":
signs = np.array([-1, -1, 1])
euler_df = track.values
# Create a new DataFrame to store the exponential map rep
new_df = pd.DataFrame(index=euler_df.index)
# Copy the root positions into the new DataFrame
rxp = "%s_Xposition" % track.root_name
ryp = "%s_Yposition" % track.root_name
rzp = "%s_Zposition" % track.root_name
new_df[rxp] = pd.Series(data=-signs[0] * euler_df[rxp], index=new_df.index)
new_df[ryp] = pd.Series(data=-signs[1] * euler_df[ryp], index=new_df.index)
new_df[rzp] = pd.Series(data=-signs[2] * euler_df[rzp], index=new_df.index)
# List the columns that contain rotation channels
rots = [c for c in euler_df.columns if ("rotation" in c and "Nub" not in c)]
# lft_rots = [c for c in euler_df.columns if ('Left' in c and 'rotation' in c and 'Nub' not in c)]
# rgt_rots = [c for c in euler_df.columns if ('Right' in c and 'rotation' in c and 'Nub' not in c)]
lft_joints = (joint for joint in track.skeleton if "Left" in joint and "Nub" not in joint)
rgt_joints = (joint for joint in track.skeleton if "Right" in joint and "Nub" not in joint)
new_track = track.clone()
for lft_joint in lft_joints:
rgt_joint = lft_joint.replace("Left", "Right")
# Create the corresponding columns in the new DataFrame
new_df["%s_Xrotation" % lft_joint] = pd.Series(
data=signs[0] * track.values["%s_Xrotation" % rgt_joint], index=new_df.index
)
new_df["%s_Yrotation" % lft_joint] = pd.Series(
data=signs[1] * track.values["%s_Yrotation" % rgt_joint], index=new_df.index
)
new_df["%s_Zrotation" % lft_joint] = pd.Series(
data=signs[2] * track.values["%s_Zrotation" % rgt_joint], index=new_df.index
)
new_df["%s_Xrotation" % rgt_joint] = pd.Series(
data=signs[0] * track.values["%s_Xrotation" % lft_joint], index=new_df.index
)
new_df["%s_Yrotation" % rgt_joint] = pd.Series(
data=signs[1] * track.values["%s_Yrotation" % lft_joint], index=new_df.index
)
new_df["%s_Zrotation" % rgt_joint] = pd.Series(
data=signs[2] * track.values["%s_Zrotation" % lft_joint], index=new_df.index
)
# List the joints that are not left or right, i.e. are on the trunk
joints = (
joint for joint in track.skeleton if "Nub" not in joint and "Left" not in joint and "Right" not in joint
)
for joint in joints:
# Create the corresponding columns in the new DataFrame
new_df["%s_Xrotation" % joint] = pd.Series(
data=signs[0] * track.values["%s_Xrotation" % joint], index=new_df.index
)
new_df["%s_Yrotation" % joint] = pd.Series(
data=signs[1] * track.values["%s_Yrotation" % joint], index=new_df.index
)
new_df["%s_Zrotation" % joint] = pd.Series(
data=signs[2] * track.values["%s_Zrotation" % joint], index=new_df.index
)
new_track.values = new_df
Q.append(new_track)
return Q
def inverse_transform(self, X, copy=None, start_pos=None):
return X
class JointSelector(BaseEstimator, TransformerMixin):
"""
Allows for filtering the mocap data to include only the selected joints
"""
def __init__(self, joints, include_root=False):
self.joints = joints
self.include_root = include_root
def fit(self, X, y=None):
selected_joints = []
selected_channels = []
if self.include_root:
selected_joints.append(X[0].root_name)
selected_joints.extend(self.joints)
for joint_name in selected_joints:
selected_channels.extend([o for o in X[0].values.columns if (joint_name + "_") in o and "Nub" not in o])
self.selected_joints = selected_joints
self.selected_channels = selected_channels
self.not_selected = X[0].values.columns.difference(selected_channels)
self.not_selected_values = {c: X[0].values[c].values[0] for c in self.not_selected}
self.orig_skeleton = X[0].skeleton
return self
def transform(self, X, y=None):
print("JointSelector")
Q = []
for track in X:
t2 = track.clone()
for key in track.skeleton.keys():
if key not in self.selected_joints:
t2.skeleton.pop(key)
t2.values = track.values[self.selected_channels]
Q.append(t2)
return Q
def inverse_transform(self, X, copy=None):
Q = []
for track in X:
t2 = track.clone()
t2.skeleton = self.orig_skeleton
for d in self.not_selected:
t2.values[d] = self.not_selected_values[d]
Q.append(t2)
return Q
class Numpyfier(BaseEstimator, TransformerMixin):
"""
Just converts the values in a MocapData object into a numpy array
Useful for the final stage of a pipeline before training
"""
def __init__(self):
pass
def fit(self, X, y=None):
self.org_mocap_ = X[0].clone()
self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True)
return self
def transform(self, X, y=None):
print("Numpyfier")
Q = []
for track in X:
Q.append(track.values.values)
# print("Numpyfier:" + str(track.values.columns))
return np.array(Q)
def inverse_transform(self, X, copy=None):
Q = []
for track in X:
new_mocap = self.org_mocap_.clone()
time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit="s")
new_df = pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns)
new_mocap.values = new_df
Q.append(new_mocap)
return Q
class Slicer(BaseEstimator, TransformerMixin):
"""
Slice the data into intervals of equal size
"""
def __init__(self, window_size, overlap=0.5):
self.window_size = window_size
self.overlap = overlap
pass
def fit(self, X, y=None):
self.org_mocap_ = X[0].clone()
self.org_mocap_.values.drop(self.org_mocap_.values.index, inplace=True)
return self
def transform(self, X, y=None):
print("Slicer")
Q = []
for track in X:
vals = track.values.values
nframes = vals.shape[0]
overlap_frames = (int)(self.overlap * self.window_size)
n_sequences = (nframes - overlap_frames) // (self.window_size - overlap_frames)
if n_sequences > 0:
y = np.zeros((n_sequences, self.window_size, vals.shape[1]))
# extract sequences from the input data
for i in range(0, n_sequences):
frameIdx = (self.window_size - overlap_frames) * i
Q.append(vals[frameIdx : frameIdx + self.window_size, :])
return np.array(Q)
def inverse_transform(self, X, copy=None):
Q = []
for track in X:
new_mocap = self.org_mocap_.clone()
time_index = pd.to_timedelta([f for f in range(track.shape[0])], unit="s")
new_df = pd.DataFrame(data=track, index=time_index, columns=self.org_mocap_.values.columns)
new_mocap.values = new_df
Q.append(new_mocap)
return Q
class RootTransformer(BaseEstimator, TransformerMixin):
def __init__(self, method, position_smoothing=0, rotation_smoothing=0):
"""
Accepted methods:
abdolute_translation_deltas
pos_rot_deltas
"""
self.method = method
self.position_smoothing = position_smoothing
self.rotation_smoothing = rotation_smoothing
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
print("RootTransformer")
Q = []
for track in X:
if self.method == "abdolute_translation_deltas":
new_df = track.values.copy()
xpcol = "%s_Xposition" % track.root_name
ypcol = "%s_Yposition" % track.root_name
zpcol = "%s_Zposition" % track.root_name
dxpcol = "%s_dXposition" % track.root_name
dzpcol = "%s_dZposition" % track.root_name
x = track.values[xpcol].copy()
z = track.values[zpcol].copy()
if self.position_smoothing > 0:
x_sm = filters.gaussian_filter1d(x, self.position_smoothing, axis=0, mode="nearest")
z_sm = filters.gaussian_filter1d(z, self.position_smoothing, axis=0, mode="nearest")
dx = pd.Series(data=x_sm, index=new_df.index).diff()
dz = pd.Series(data=z_sm, index=new_df.index).diff()
new_df[xpcol] = x - x_sm
new_df[zpcol] = z - z_sm
else:
dx = x.diff()
dz = z.diff()
new_df.drop([xpcol, zpcol], axis=1, inplace=True)
dx[0] = dx[1]
dz[0] = dz[1]
new_df[dxpcol] = dx
new_df[dzpcol] = dz
new_track = track.clone()
new_track.values = new_df
# end of abdolute_translation_deltas
elif self.method == "pos_rot_deltas":
new_track = track.clone()
# Absolute columns
xp_col = "%s_Xposition" % track.root_name
yp_col = "%s_Yposition" % track.root_name
zp_col = "%s_Zposition" % track.root_name
# rot_order = track.skeleton[track.root_name]['order']
# %(joint, rot_order[0])
rot_order = track.skeleton[track.root_name]["order"]
r1_col = "%s_%srotation" % (track.root_name, rot_order[0])
r2_col = "%s_%srotation" % (track.root_name, rot_order[1])
r3_col = "%s_%srotation" % (track.root_name, rot_order[2])
# Delta columns
dxp_col = "%s_dXposition" % track.root_name
dzp_col = "%s_dZposition" % track.root_name
dxr_col = "%s_dXrotation" % track.root_name
dyr_col = "%s_dYrotation" % track.root_name
dzr_col = "%s_dZrotation" % track.root_name
positions = np.transpose(np.array([track.values[xp_col], track.values[yp_col], track.values[zp_col]]))
rotations = (
np.pi
/ 180.0
* np.transpose(np.array([track.values[r1_col], track.values[r2_col], track.values[r3_col]]))
)
""" Get Trajectory and smooth it"""
trajectory_filterwidth = self.position_smoothing
reference = positions.copy() * np.array([1, 0, 1])
if trajectory_filterwidth > 0:
reference = filters.gaussian_filter1d(reference, trajectory_filterwidth, axis=0, mode="nearest")
""" Get Root Velocity """
velocity = np.diff(reference, axis=0)
velocity = np.vstack((velocity[0, :], velocity))
""" Remove Root Translation """
positions = positions - reference
""" Get Forward Direction along the x-z plane, assuming character is facig z-forward """
# forward = [Rotation(f, 'euler', from_deg=True, order=rot_order).rotmat[:,2] for f in rotations] # get the z-axis of the rotation matrix, assuming character is facig z-forward
# print("order:" + rot_order.lower())
quats = Quaternions.from_euler(rotations, order=rot_order.lower(), world=False)
forward = quats * np.array([[0, 0, 1]])
forward[:, 1] = 0
""" Smooth Forward Direction """
direction_filterwidth = self.rotation_smoothing
if direction_filterwidth > 0:
forward = filters.gaussian_filter1d(forward, direction_filterwidth, axis=0, mode="nearest")
forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis]
""" Remove Y Rotation """
target = np.array([[0, 0, 1]]).repeat(len(forward), axis=0)
rotation = Quaternions.between(target, forward)[:, np.newaxis]
positions = (-rotation[:, 0]) * positions
new_rotations = (-rotation[:, 0]) * quats
""" Get Root Rotation """
# print(rotation[:,0])
velocity = (-rotation[:, 0]) * velocity
rvelocity = Pivots.from_quaternions(rotation[1:] * -rotation[:-1]).ps
rvelocity = np.vstack((rvelocity[0], rvelocity))
# eulers = np.array([t3d.euler.quat2euler(q, axes=('s'+rot_order.lower()[::-1]))[::-1] for q in new_rotations])*180.0/np.pi
# we need to put scalar last, and swap rotation order.
eulers = R.from_quat(np.array(new_rotations)[:, [1, 2, 3, 0]]).as_euler(
rot_order.lower()[::-1], degrees=True
)[:, ::-1]
new_df = track.values.copy()
root_pos_x = pd.Series(data=positions[:, 0], index=new_df.index)
root_pos_y = pd.Series(data=positions[:, 1], index=new_df.index)
root_pos_z = pd.Series(data=positions[:, 2], index=new_df.index)
root_pos_x_diff = pd.Series(data=velocity[:, 0], index=new_df.index)
root_pos_z_diff = pd.Series(data=velocity[:, 2], index=new_df.index)
root_rot_1 = pd.Series(data=eulers[:, 0], index=new_df.index)
root_rot_2 = pd.Series(data=eulers[:, 1], index=new_df.index)
root_rot_3 = pd.Series(data=eulers[:, 2], index=new_df.index)
root_rot_y_diff = pd.Series(data=rvelocity[:, 0], index=new_df.index)
# new_df.drop([xr_col, yr_col, zr_col, xp_col, zp_col], axis=1, inplace=True)
new_df[xp_col] = root_pos_x
new_df[yp_col] = root_pos_y
new_df[zp_col] = root_pos_z
new_df[dxp_col] = root_pos_x_diff
new_df[dzp_col] = root_pos_z_diff
new_df[r1_col] = root_rot_1
new_df[r2_col] = root_rot_2
new_df[r3_col] = root_rot_3
# new_df[dxr_col] = root_rot_x_diff
new_df[dyr_col] = root_rot_y_diff
# new_df[dzr_col] = root_rot_z_diff
new_track.values = new_df
elif self.method == "hip_centric":
new_track = track.clone()
# Absolute columns
xp_col = "%s_Xposition" % track.root_name
yp_col = "%s_Yposition" % track.root_name
zp_col = "%s_Zposition" % track.root_name
xr_col = "%s_Xrotation" % track.root_name
yr_col = "%s_Yrotation" % track.root_name
zr_col = "%s_Zrotation" % track.root_name
new_df = track.values.copy()
all_zeros = np.zeros(track.values[xp_col].values.shape)
new_df[xp_col] = pd.Series(data=all_zeros, index=new_df.index)
new_df[yp_col] = pd.Series(data=all_zeros, index=new_df.index)
new_df[zp_col] = pd.Series(data=all_zeros, index=new_df.index)
new_df[xr_col] = pd.Series(data=all_zeros, index=new_df.index)
new_df[yr_col] = pd.Series(data=all_zeros, index=new_df.index)
new_df[zr_col] = pd.Series(data=all_zeros, index=new_df.index)
new_track.values = new_df
# print(new_track.values.columns)
Q.append(new_track)
return Q
def inverse_transform(self, X, copy=None, start_pos=None):
Q = []
# TODO: simplify this implementation
startx = 0
startz = 0
if start_pos is not None:
startx, startz = start_pos
for track in X:
new_track = track.clone()
if self.method == "abdolute_translation_deltas":
new_df = new_track.values
xpcol = "%s_Xposition" % track.root_name
ypcol = "%s_Yposition" % track.root_name
zpcol = "%s_Zposition" % track.root_name
dxpcol = "%s_dXposition" % track.root_name
dzpcol = "%s_dZposition" % track.root_name
dx = track.values[dxpcol].values
dz = track.values[dzpcol].values
recx = [startx]
recz = [startz]
for i in range(dx.shape[0] - 1):
recx.append(recx[i] + dx[i + 1])
recz.append(recz[i] + dz[i + 1])
# recx = [recx[i]+dx[i+1] for i in range(dx.shape[0]-1)]
# recz = [recz[i]+dz[i+1] for i in range(dz.shape[0]-1)]
# recx = dx[:-1] + dx[1:]
# recz = dz[:-1] + dz[1:]
if self.position_smoothing > 0:
new_df[xpcol] = pd.Series(data=new_df[xpcol] + recx, index=new_df.index)
new_df[zpcol] = pd.Series(data=new_df[zpcol] + recz, index=new_df.index)
else:
new_df[xpcol] = pd.Series(data=recx, index=new_df.index)
new_df[zpcol] = pd.Series(data=recz, index=new_df.index)
new_df.drop([dxpcol, dzpcol], axis=1, inplace=True)
new_track.values = new_df
# end of abdolute_translation_deltas
elif self.method == "pos_rot_deltas":
# Absolute columns
rot_order = track.skeleton[track.root_name]["order"]
xp_col = "%s_Xposition" % track.root_name
yp_col = "%s_Yposition" % track.root_name
zp_col = "%s_Zposition" % track.root_name
xr_col = "%s_Xrotation" % track.root_name
yr_col = "%s_Yrotation" % track.root_name
zr_col = "%s_Zrotation" % track.root_name
r1_col = "%s_%srotation" % (track.root_name, rot_order[0])
r2_col = "%s_%srotation" % (track.root_name, rot_order[1])
r3_col = "%s_%srotation" % (track.root_name, rot_order[2])
# Delta columns
dxp_col = "%s_dXposition" % track.root_name
dzp_col = "%s_dZposition" % track.root_name
dyr_col = "%s_dYrotation" % track.root_name
positions = np.transpose(np.array([track.values[xp_col], track.values[yp_col], track.values[zp_col]]))
rotations = (
np.pi
/ 180.0
* np.transpose(np.array([track.values[r1_col], track.values[r2_col], track.values[r3_col]]))
)
quats = Quaternions.from_euler(rotations, order=rot_order.lower(), world=False)
new_df = track.values.copy()
dx = track.values[dxp_col].values
dz = track.values[dzp_col].values
dry = track.values[dyr_col].values
# rec_p = np.array([startx, 0, startz])+positions[0,:]
rec_ry = Quaternions.id(quats.shape[0])
rec_xp = [0]
rec_zp = [0]
# rec_r = Quaternions.id(quats.shape[0])
for i in range(dx.shape[0] - 1):
# print(dry[i])
q_y = Quaternions.from_angle_axis(np.array(dry[i + 1]), np.array([0, 1, 0]))
rec_ry[i + 1] = q_y * rec_ry[i]
# print("dx: + " + str(dx[i+1]))
dp = rec_ry[i + 1] * np.array([dx[i + 1], 0, dz[i + 1]])
rec_xp.append(rec_xp[i] + dp[0, 0])
rec_zp.append(rec_zp[i] + dp[0, 2])
rec_r = rec_ry * quats
pp = rec_ry * positions
rec_xp = rec_xp + pp[:, 0]
rec_zp = rec_zp + pp[:, 2]
# eulers = np.array([t3d.euler.quat2euler(q, axes=('s'+rot_order.lower()[::-1]))[::-1] for q in rec_r])*180.0/np.pi
# we need to put scalar last, and swap rotation order.
eulers = R.from_quat(np.array(rec_r)[:, [1, 2, 3, 0]]).as_euler(rot_order.lower()[::-1], degrees=True)[
:, ::-1
]
new_df = track.values.copy()
root_rot_1 = pd.Series(data=eulers[:, 0], index=new_df.index)
root_rot_2 = pd.Series(data=eulers[:, 1], index=new_df.index)
root_rot_3 = pd.Series(data=eulers[:, 2], index=new_df.index)
new_df[xp_col] = pd.Series(data=rec_xp, index=new_df.index)
new_df[zp_col] = pd.Series(data=rec_zp, index=new_df.index)
new_df[r1_col] = pd.Series(data=root_rot_1, index=new_df.index)
new_df[r2_col] = pd.Series(data=root_rot_2, index=new_df.index)
new_df[r3_col] = pd.Series(data=root_rot_3, index=new_df.index)
new_df.drop([dyr_col, dxp_col, dzp_col], axis=1, inplace=True)
new_track.values = new_df
# print(new_track.values.columns)
Q.append(new_track)
return Q
class RootCentricPositionNormalizer(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
Q = []
for track in X:
new_track = track.clone()
rxp = "%s_Xposition" % track.root_name
ryp = "%s_Yposition" % track.root_name
rzp = "%s_Zposition" % track.root_name
projected_root_pos = track.values[[rxp, ryp, rzp]]
projected_root_pos.loc[:, ryp] = 0 # we want the root's projection on the floor plane as the ref
new_df = pd.DataFrame(index=track.values.index)
all_but_root = [joint for joint in track.skeleton if track.root_name not in joint]
# all_but_root = [joint for joint in track.skeleton]
for joint in all_but_root:
new_df["%s_Xposition" % joint] = pd.Series(
data=track.values["%s_Xposition" % joint] - projected_root_pos[rxp], index=new_df.index
)
new_df["%s_Yposition" % joint] = pd.Series(
data=track.values["%s_Yposition" % joint] - projected_root_pos[ryp], index=new_df.index
)
new_df["%s_Zposition" % joint] = pd.Series(
data=track.values["%s_Zposition" % joint] - projected_root_pos[rzp], index=new_df.index
)
# keep the root as it is now
new_df[rxp] = track.values[rxp]
new_df[ryp] = track.values[ryp]
new_df[rzp] = track.values[rzp]
new_track.values = new_df
Q.append(new_track)
return Q
def inverse_transform(self, X, copy=None):
Q = []
for track in X:
new_track = track.clone()
rxp = "%s_Xposition" % track.root_name
ryp = "%s_Yposition" % track.root_name
rzp = "%s_Zposition" % track.root_name
projected_root_pos = track.values[[rxp, ryp, rzp]]
projected_root_pos.loc[:, ryp] = 0 # we want the root's projection on the floor plane as the ref
new_df = pd.DataFrame(index=track.values.index)
for joint in track.skeleton:
new_df["%s_Xposition" % joint] = pd.Series(
data=track.values["%s_Xposition" % joint] + projected_root_pos[rxp], index=new_df.index
)
new_df["%s_Yposition" % joint] = pd.Series(
data=track.values["%s_Yposition" % joint] + projected_root_pos[ryp], index=new_df.index
)
new_df["%s_Zposition" % joint] = pd.Series(
data=track.values["%s_Zposition" % joint] + projected_root_pos[rzp], index=new_df.index
)
new_track.values = new_df
Q.append(new_track)
return Q
class Flattener(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return np.concatenate(X, axis=0)
class ConstantsRemover(BaseEstimator, TransformerMixin):
"""
For now it just looks at the first track
"""
def __init__(self, eps=1e-6):
self.eps = eps
def fit(self, X, y=None):
stds = X[0].values.std()
cols = X[0].values.columns.values
self.const_dims_ = [c for c in cols if (stds[c] < self.eps).any()]
self.const_values_ = {c: X[0].values[c].values[0] for c in cols if (stds[c] < self.eps).any()}
return self
def transform(self, X, y=None):
Q = []
for track in X:
t2 = track.clone()
# for key in t2.skeleton.keys():
# if key in self.ConstDims_:
# t2.skeleton.pop(key)
# print(track.values.columns.difference(self.const_dims_))
t2.values.drop(self.const_dims_, axis=1, inplace=True)
# t2.values = track.values[track.values.columns.difference(self.const_dims_)]
Q.append(t2)
return Q
def inverse_transform(self, X, copy=None):
Q = []
for track in X:
t2 = track.clone()
for d in self.const_dims_:
t2.values[d] = self.const_values_[d]
# t2.values.assign(d=pd.Series(data=self.const_values_[d], index = t2.values.index))
Q.append(t2)
return Q
class ListStandardScaler(BaseEstimator, TransformerMixin):
def __init__(self, is_DataFrame=False):
self.is_DataFrame = is_DataFrame
def fit(self, X, y=None):
if self.is_DataFrame:
X_train_flat = np.concatenate([m.values for m in X], axis=0)
else:
X_train_flat = np.concatenate([m for m in X], axis=0)
self.data_mean_ = np.mean(X_train_flat, axis=0)
self.data_std_ = np.std(X_train_flat, axis=0)
return self
def transform(self, X, y=None):
Q = []
for track in X:
if self.is_DataFrame:
normalized_track = track.copy()
normalized_track.values = (track.values - self.data_mean_) / self.data_std_
else:
normalized_track = (track - self.data_mean_) / self.data_std_
Q.append(normalized_track)
if self.is_DataFrame:
return Q
else:
return np.array(Q)
def inverse_transform(self, X, copy=None):
Q = []
for track in X:
if self.is_DataFrame:
unnormalized_track = track.copy()
unnormalized_track.values = (track.values * self.data_std_) + self.data_mean_
else:
unnormalized_track = (track * self.data_std_) + self.data_mean_
Q.append(unnormalized_track)
if self.is_DataFrame:
return Q
else:
return np.array(Q)
class ListMinMaxScaler(BaseEstimator, TransformerMixin):
def __init__(self, is_DataFrame=False):
self.is_DataFrame = is_DataFrame
def fit(self, X, y=None):
if self.is_DataFrame:
X_train_flat = np.concatenate([m.values for m in X], axis=0)
else:
X_train_flat = np.concatenate([m for m in X], axis=0)
self.data_max_ = np.max(X_train_flat, axis=0)
self.data_min_ = np.min(X_train_flat, axis=0)
return self
def transform(self, X, y=None):
Q = []
for track in X:
if self.is_DataFrame:
normalized_track = track.copy()
normalized_track.values = (track.values - self.data_min_) / (self.data_max_ - self.data_min_)
else:
normalized_track = (track - self.data_min_) / (self.data_max_ - self.data_min_)
Q.append(normalized_track)
if self.is_DataFrame:
return Q
else:
return np.array(Q)
def inverse_transform(self, X, copy=None):
Q = []
for track in X:
if self.is_DataFrame:
unnormalized_track = track.copy()
unnormalized_track.values = (track.values * (self.data_max_ - self.data_min_)) + self.data_min_
else:
unnormalized_track = (track * (self.data_max_ - self.data_min_)) + self.data_min_
Q.append(unnormalized_track)
if self.is_DataFrame:
return Q
else:
return np.array(Q)
class DownSampler(BaseEstimator, TransformerMixin):
def __init__(self, tgt_fps, keep_all=False):
self.tgt_fps = tgt_fps
self.keep_all = keep_all
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
Q = []
for track in X:
orig_fps = round(1.0 / track.framerate)
rate = orig_fps // self.tgt_fps
if orig_fps % self.tgt_fps != 0:
print(
"error orig_fps (" + str(orig_fps) + ") is not dividable with tgt_fps (" + str(self.tgt_fps) + ")"
)
else:
print("downsampling with rate: " + str(rate))
for ii in range(0, rate):
new_track = track.clone()
new_track.values = track.values[ii:-1:rate].copy()
new_track.framerate = 1.0 / self.tgt_fps
Q.append(new_track)
if not self.keep_all:
break
return Q
def inverse_transform(self, X, copy=None):
return X
class ReverseTime(BaseEstimator, TransformerMixin):
def __init__(self, append=True):
self.append = append
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
Q = []
if self.append:
for track in X:
Q.append(track)
for track in X:
new_track = track.clone()
new_track.values = track.values[-1::-1]
Q.append(new_track)
return Q
def inverse_transform(self, X, copy=None):
return X
# TODO: JointsSelector (x)
# TODO: SegmentMaker
# TODO: DynamicFeaturesAdder
# TODO: ShapeFeaturesAdder
# TODO: DataFrameNumpier (x)
class TemplateTransform(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return X
|