### Code modified from Rafael Valle's implementation https://github.com/NVIDIA/waveglow/blob/5bc2a53e20b3b533362f974cfa1ea0267ae1c2b1/denoiser.py """Waveglow style denoiser can be used to remove the artifacts from the HiFiGAN generated audio.""" import torch class Denoiser(torch.nn.Module): """Removes model bias from audio produced with waveglow""" def __init__(self, vocoder, filter_length=1024, n_overlap=4, win_length=1024, mode="zeros"): super().__init__() self.filter_length = filter_length self.hop_length = int(filter_length / n_overlap) self.win_length = win_length dtype, device = next(vocoder.parameters()).dtype, next(vocoder.parameters()).device self.device = device if mode == "zeros": mel_input = torch.zeros((1, 80, 88), dtype=dtype, device=device) elif mode == "normal": mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device) else: raise Exception(f"Mode {mode} if not supported") def stft_fn(audio, n_fft, hop_length, win_length, window): spec = torch.stft( audio, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, return_complex=True, ) spec = torch.view_as_real(spec) return torch.sqrt(spec.pow(2).sum(-1)), torch.atan2(spec[..., -1], spec[..., 0]) self.stft = lambda x : stft_fn( audio=x, n_fft=self.filter_length, hop_length=self.hop_length, win_length=self.win_length, window=torch.hann_window(self.win_length, device=device) ) self.istft = lambda x, y: torch.istft( torch.complex(x * torch.cos(y), x * torch.sin(y)), n_fft=self.filter_length, hop_length=self.hop_length, win_length=self.win_length, window=torch.hann_window(self.win_length, device=device), ) with torch.no_grad(): bias_audio = vocoder(mel_input).float().squeeze(0) bias_spec, _ = self.stft(bias_audio) self.register_buffer("bias_spec", bias_spec[:, :, 0][:, :, None]) @torch.inference_mode() def forward(self, audio, strength=0.0005): audio_spec, audio_angles = self.stft(audio) audio_spec_denoised = audio_spec - self.bias_spec.to(audio.device) * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.istft(audio_spec_denoised, audio_angles) return audio_denoised