File size: 12,693 Bytes
c77ff04
 
 
 
 
 
 
23f59c4
c77ff04
 
 
 
 
 
 
 
 
 
23f59c4
c77ff04
 
23f59c4
 
 
c77ff04
23f59c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77ff04
 
23f59c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77ff04
 
 
 
 
 
 
 
 
23f59c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77ff04
 
 
 
 
 
23f59c4
 
 
 
 
 
 
c77ff04
23f59c4
c77ff04
 
 
23f59c4
 
 
c77ff04
 
23f59c4
 
 
 
c77ff04
 
2f3fc85
23f59c4
c77ff04
23f59c4
83a83a1
 
23f59c4
c77ff04
23f59c4
 
 
 
 
c77ff04
23f59c4
eece693
 
 
 
23f59c4
 
 
 
 
 
 
 
 
 
 
 
 
c77ff04
 
23f59c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30e2d5
23f59c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77ff04
23f59c4
 
 
 
 
c77ff04
eece693
23f59c4
 
 
 
 
c77ff04
23f59c4
 
 
 
 
 
 
 
 
 
 
 
 
c77ff04
52f184a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import tempfile
from argparse import Namespace
from pathlib import Path

import gradio as gr
import soundfile as sf
import torch
from matcha.cli import (MATCHA_URLS, VOCODER_URLS, assert_model_downloaded,
                        get_device, load_matcha, load_vocoder, process_text,
                        to_waveform)
from matcha.utils.utils import get_user_data_dir, plot_tensor

LOCATION = Path(get_user_data_dir())

args = Namespace(
    cpu=False,
    model="matcha_ljspeech",
    vocoder="hifigan_T2_v1",
    spk=0,
)


MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt"  # noqa: E731
VOCODER_LOC = lambda x: LOCATION / f"{x}"  # noqa: E731
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
RADIO_OPTIONS = {
    "Multi Speaker (VCTK)": {
        "model": "matcha_vctk",
        "vocoder": "hifigan_univ_v1",
    },
    "Single Speaker (LJ Speech)": {
        "model": "matcha_ljspeech",
        "vocoder": "hifigan_T2_v1",
    },
}

# Ensure all the required models are downloaded
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])

# get device
device = get_device(args)

# Load default models
matcha_ljspeech = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
hifigan_T2_v1, hifigan_T2_v1_denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)

matcha_vctk = load_matcha("matcha_vctk", MATCHA_TTS_LOC("matcha_vctk"), device)
hifigan_univ_v1, hifigan_univ_v1_denoiser = load_vocoder("hifigan_univ_v1", VOCODER_LOC("hifigan_univ_v1"), device)



def load_model_ui(model_type, textbox):
    model_name = RADIO_OPTIONS[model_type]["model"]

    if model_name == "matcha_ljspeech":
        spk_slider = gr.update(visible=False, value=-1)
        single_speaker_examples = gr.update(visible=True)
        multi_speaker_examples = gr.update(visible=False)
        length_scale = gr.update(value=0.95)
    else:
        spk_slider = gr.update(visible=True, value=0)
        single_speaker_examples = gr.update(visible=False)
        multi_speaker_examples = gr.update(visible=True)
        length_scale = gr.update(value=0.85)

    return textbox, gr.update(interactive=True), spk_slider, single_speaker_examples, multi_speaker_examples, length_scale


@torch.inference_mode()
def process_text_gradio(text):
    output = process_text(1, text, device)
    return output["x_phones"][1::2], output["x"], output["x_lengths"]


@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
    spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
    
    if spk is None:
        output = matcha_ljspeech.synthesise(
            text,
            text_length,
            n_timesteps=n_timesteps,
            temperature=temperature,
            spks=None,
            length_scale=length_scale,
        )
        output["waveform"] = to_waveform(output["mel"], hifigan_T2_v1, hifigan_T2_v1_denoiser)
    else:
        output = matcha_vctk.synthesise(
            text,
            text_length,
            n_timesteps=n_timesteps,
            temperature=temperature,
            spks=spk,
            length_scale=length_scale,
        )
        output["waveform"] = to_waveform(output["mel"], hifigan_univ_v1, hifigan_univ_v1_denoiser)

    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
        sf.write(fp.name, output["waveform"], 22050, "PCM_24")

    return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())


def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
    phones, text, text_lengths = process_text_gradio(text)
    audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
    return phones, audio, mel_spectrogram


def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
    phones, text, text_lengths = process_text_gradio(text)
    audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
    return phones, audio, mel_spectrogram


description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:


* Is probabilistic
* Has compact memory footprint
* Sounds highly natural
* Is very fast to synthesise from


Check out audio examples below and read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models.

Cached examples are available at the bottom of the page.

Note: Synthesis speed may be slower than in our paper due to I/O latency and because this instance runs on CPUs.
"""

with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
    processed_text = gr.State(value=None)
    processed_text_len = gr.State(value=None)

    with gr.Box():
        with gr.Row():
            gr.Markdown(description, scale=3)
            with gr.Column():
                gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
                html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
                gr.HTML(html)

    with gr.Box():
        radio_options = list(RADIO_OPTIONS.keys())
        model_type = gr.Radio(
            radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
        )

        with gr.Row():
            gr.Markdown("# Text Input")
        with gr.Row():
            text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
            spk_slider = gr.Slider(
                minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
            )

        with gr.Row():
            gr.Markdown("### Hyper parameters")
        with gr.Row():
            n_timesteps = gr.Slider(
                label="Number of ODE steps",
                minimum=1,
                maximum=100,
                step=1,
                value=10,
                interactive=True,
            )
            length_scale = gr.Slider(
                label="Length scale (Speaking rate)",
                minimum=0.5,
                maximum=1.5,
                step=0.05,
                value=0.85,
                interactive=True,
            )
            mel_temp = gr.Slider(
                label="Sampling temperature",
                minimum=0.00,
                maximum=2.001,
                step=0.16675,
                value=0.667,
                interactive=True,
            )

            synth_btn = gr.Button("Synthesise")

    with gr.Box():
        with gr.Row():
            gr.Markdown("### Phonetised text")
            phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")

    with gr.Box():
        with gr.Row():
            mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")

            # with gr.Row():
            audio = gr.Audio(interactive=False, label="Audio")

    with gr.Row(visible=False) as example_row_lj_speech:
        examples = gr.Examples(  # pylint: disable=unused-variable
            examples=[
                [
                    "We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
                    50,
                    0.677,
                    0.95,
                ],
                [
                    "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
                    2,
                    0.677,
                    0.95,
                ],
                [
                    "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
                    4,
                    0.677,
                    0.95,
                ],
                [
                    "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
                    10,
                    0.677,
                    0.95,
                ],
                [
                    "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
                    50,
                    0.677,
                    0.95,
                ],
                [
                    "The narrative of these events is based largely on the recollections of the participants.",
                    10,
                    0.677,
                    0.95,
                ],
                [
                    "The jury did not believe him, and the verdict was for the defendants.",
                    10,
                    0.677,
                    0.95,
                ],
            ],
            fn=ljspeech_example_cacher,
            inputs=[text, n_timesteps, mel_temp, length_scale],
            outputs=[phonetised_text, audio, mel_spectrogram],
            cache_examples=True,
        )

    with gr.Row() as example_row_multispeaker:
        multi_speaker_examples = gr.Examples(  # pylint: disable=unused-variable
            examples=[
                [
                    "Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
                    10,
                    0.677,
                    0.85,
                    0,
                ],
                [
                    "Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
                    10,
                    0.677,
                    0.85,
                    16,
                ],
                [
                    "Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
                    50,
                    0.677,
                    0.85,
                    44,
                ],
                [
                    "Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
                    50,
                    0.677,
                    0.85,
                    45,
                ],
                [
                    "Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
                    4,
                    0.677,
                    0.85,
                    58,
                ],
            ],
            fn=multispeaker_example_cacher,
            inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
            outputs=[phonetised_text, audio, mel_spectrogram],
            cache_examples=True,
            label="Multi Speaker Examples",
        )
    
    model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
        load_model_ui,
        inputs=[model_type, text],
        outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
    )

    synth_btn.click(
        fn=process_text_gradio,
        inputs=[
            text,
        ],
        outputs=[phonetised_text, processed_text, processed_text_len],
        api_name="matcha_tts",
        queue=True,
    ).then(
        fn=synthesise_mel,
        inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
        outputs=[audio, mel_spectrogram],
    )

    demo.queue(concurrency_count=5).launch()